919 resultados para SELECTIVE D1
Resumo:
Precise identification of regulatory T cells is crucial in the understanding of their role in human cancers. Here, we analyzed the frequency and phenotype of regulatory T cells (Tregs), in both healthy donors and melanoma patients, based on the expression of the transcription factor FOXP3, which, to date, is the most reliable marker for Tregs, at least in mice. We observed that FOXP3 expression is not confined to human CD25(+/high) CD4(+) T cells, and that these cells are not homogenously FOXP3(+). The circulating relative levels of FOXP3(+) CD4(+) T cells may fluctuate close to 2-fold over a short period of observation and are significantly higher in women than in men. Further, we showed that FOXP3(+) CD4(+) T cells are over-represented in peripheral blood of melanoma patients, as compared to healthy donors, and that they are even more enriched in tumor-infiltrated lymph nodes and at tumor sites, but not in normal lymph nodes. Interestingly, in melanoma patients, a significantly higher proportion of functional, antigen-experienced FOXP3(+) CD4(+) T was observed at tumor sites, compared to peripheral blood. Together, our data suggest that local accumulation and differentiation of Tregs is, at least in part, tumor-driven, and illustrate a reliable combination of markers for their monitoring in various clinical settings.
Resumo:
In coronary magnetic resonance angiography, a magnetization-preparation scheme for T2 -weighting (T2 Prep) is widely used to enhance contrast between the coronary blood-pool and the myocardium. This prepulse is commonly applied without spatial selection to minimize flow sensitivity, but the nonselective implementation results in a reduced magnetization of the in-flowing blood and a related penalty in signal-to-noise ratio. It is hypothesized that a spatially selective T2 Prep would leave the magnetization of blood outside the T2 Prep volume unaffected and thereby lower the signal-to-noise ratio penalty. To test this hypothesis, a spatially selective T2 Prep was implemented where the user could freely adjust angulation and position of the T2 Prep slab to avoid covering the ventricular blood-pool and saturating the in-flowing spins. A time gap of 150 ms was further added between the T2 Prep and other prepulses to allow for in-flow of a larger volume of unsaturated spins. Consistent with numerical simulation, the spatially selective T2 Prep increased in vivo human coronary artery signal-to-noise ratio (42.3 ± 2.9 vs. 31.4 ± 2.2, n = 22, P < 0.0001) and contrast-to-noise-ratio (18.6 ± 1.5 vs. 13.9 ± 1.2, P = 0.009) as compared to those of the nonselective T2 Prep. Additionally, a segmental analysis demonstrated that the spatially selective T2 Prep was most beneficial in proximal and mid segments where the in-flowing blood volume was largest compared to the distal segments. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
BACKGROUND: Mantle cell lymphoma is a clinically heterogeneous disease characterized by overexpression of cyclin D1 protein. Blastoid morphology, high proliferation, and secondary genetic aberrations are markers of aggressive behavior. Expression profiling of mantle cell lymphoma revealed that predominance of the 3'UTR-deficient, short cyclin D1 mRNA isoform was associated with high cyclin D1 levels, a high "proliferation signature" and poor prognosis. DESIGN AND METHODS: Sixty-two cases of mantle cell lymphoma were analyzed for cyclin D1 mRNA isoforms and total cyclin D1 levels by real-time reverse transcriptase polymerase chain reaction, and TP53 alterations were assessed by immunohistochemistry and molecular analysis. Results were correlated with proliferation index and clinical outcome. RESULTS: Predominance of the short cyclin D1 mRNA was found in 14 (23%) samples, including four with complete loss of the standard transcript. TP53 alterations were found in 15 (24%) cases. Predominance of 3'UTR-deficient mRNA was significantly associated with high cyclin D1 mRNA levels (P=0.009) and more commonly found in blastoid mantle cell lymphoma (5/11, P=0.060) and cases with a proliferation index of >20% (P=0.026). Both blastoid morphology (11/11, P<0.001) and TP53 alterations (15/15, P<0.001) were significantly correlated with a high proliferation index. A proliferation index of 10% was determined to be a significant threshold for survival in multivariate analysis (P=0.01). CONCLUSIONS: TP53 alterations are strongly associated with a high proliferation index and aggressive behavior in mantle cell lymphoma. Predominance of the 3'UTR-deficient transcript correlates with higher cyclin D1 levels and may be a secondary contributing factor to high proliferation, but failed to reach prognostic significance in this study.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) plays a key role in adipocyte differentiation and insulin sensitivity. Its synthetic ligands, the thiazolidinediones (TZD), are used as insulin sensitizers in the treatment of type 2 diabetes. These compounds induce both adipocyte differentiation in cell culture models and promote weight gain in rodents and humans. Here, we report on the identification of a new synthetic PPARgamma antagonist, the phosphonophosphate SR-202, which inhibits both TZD-stimulated recruitment of the coactivator steroid receptor coactivator-1 and TZD-induced transcriptional activity of the receptor. In cell culture, SR-202 efficiently antagonizes hormone- and TZD-induced adipocyte differentiation. In vivo, decreasing PPARgamma activity, either by treatment with SR-202 or by invalidation of one allele of the PPARgamma gene, leads to a reduction of both high fat diet-induced adipocyte hypertrophy and insulin resistance. These effects are accompanied by a smaller size of the adipocytes and a reduction of TNFalpha and leptin secretion. Treatment with SR-202 also dramatically improves insulin sensitivity in the diabetic ob/ob mice. Thus, although we cannot exclude that its actions involve additional signaling mechanisms, SR-202 represents a new selective PPARgamma antagonist that is effective both in vitro and in vivo. Because it yields both antiobesity and antidiabetic effects, SR-202 may be a lead for new compounds to be used in the treatment of obesity and type 2 diabetes.
Resumo:
1 kartta :, vär. ;, 51 x 42,9 cm, lehti 58,2 x 50,4 cm
Resumo:
The cyanobacterium Synechococcus sp. PCC 7942 (Anacystis nidulans R2) adjusts its photosynthetic function by changing one of the polypeptides of photosystem II. This polypeptide, called Dl, is found in two forms in Synechococcus sp. PCC 7942. Changing the growth light conditions by increasing the light intensity to higher levels results in replacement of the original form of D 1 polypeptide, D 1: 1, with another form, D 1 :2. We investigated the role of these two polypeptides in two mutant strains, R2S2C3 (only Dl:l present) and R2Kl (only Dl:2 present) In cells with either high or low PSI/PSII. R2S2C3 cells had a lower amplitude for 77 K fluorescence emission at 695 nm than R2Kl cells. Picosecond fluorescence decay kinetics showed that R2S2C3 cells had shorter lifetimes than R2Kl cells. The lower yields and shorter lifetimes observed in the D 1 and Dl:2 containing cells. containing cells suggest that the presence of D 1: 1 results in more photochemical or non-photochemical quenching of excitation energy In PSII. One of the most likely mechanisms for the increased quenching in R2S2C3 cells could be an increased efficiency in the transfer of excitation energy from PSII to PSI. However, photophysical studies including 77 K fluorescence measurements and picosecond time resolved decay kinetics comparing low and high PSI/PSII cells did not support the hypothesis that D 1: 1 facilitates the dissipation of excess energy by energy transfer from PSII to PSI. In addition physiological studies of oxygen evolution measurements after photoinhibition treatments showed that the two mutant cells had no difference in their susceptibility to photoinhibition with either high PSI/PSII ratio or low PSI/PSII ratio. Again suggesting that, the energy transfer efficiency from PSII to PSI is likely not a factor in the differences between Dl:l and Dl:2 containing cells.
Resumo:
While sleep has been shown to be involved in memory consolidation and the selective enhancement of newly acquired memories of future relevance (Wilhelm, et al., 2011), limited research has investigated the role of sleep or future relevance in processes of memory reconsolidation. The current research employed a list-method directed forgetting procedure in which participants learned two lists of syllable pairs on Night 1 and received directed forgetting instructions on Night 2. On Night 2, one group (Labile; n = 15) received a memory reactivation treatment consisting of reminders designed to return memories of the learned lists to a labile state. A second group (Stable, n = 16) received similar reminders designed to leave memories of the learned lists in their stable state. No differences in forgetting were found across the two lists or groups. However, a negative correlation between frontal delta (1 – 4 Hz) electroencephalographic (EEG) power during Early Stage 2 non-rapid eye movement (NREM) sleep and forgetting of to-beremembered material was found exclusively in the Labile group (r = -.61, p < .05). Further, central theta (4 – 8 Hz ) EEG power during rapid eye movement (REM) sleep was found to correlate with directed forgetting exclusively in the Labile group (r = .81, p < .001) and total forgetting in the Stable group (r = .50, p < .05). These observed relationships support the proposed hypothesis suggesting that sleep processes are involved in the reconsolidation of labile memories, and that this reconsolidation may be selective for memories of future relevance. A role for sleep in the beneficial reprocessing of memories through the selective reconsolidation of labile memories in NREM sleep and the weakening of memories in REM sleep is discussed.
Resumo:
Neuropeptides can modulate physiological properties of neurons in a cell-specific manner. The present work examines whether a neuropeptide can also modulate muscle tissue in a cell-specific manner, using identified muscle cells in third instar larvae of fruit flies. DPKQDFMRFa, a modulatory peptide in the fruit fly Drosophila melanogaster, has been shown to enhance transmitter release from motor neurons and to elicit contractions by a direct effect on muscle cells. We report that DPKQDFMRFa causes a nifedipine-sensitive drop in input resistance in some muscle cells (6 and 7) but not others (12 and 13). The peptide also increased the amplitude of nerve-evoked contractions and compound excitatory junctional potentials (EJPs) to a greater degree in muscle cells 6 and 7 than 12 and 13. Knocking down FMRFa receptor (FR) expression separately in nerve and muscle indicate that both presynaptic and postsynaptic FR expression contributed to the enhanced contractions, but EJP enhancement was due mainly to presynaptic expression. Muscle-ablation showed that DPKQDFMRFa induced contractions and enhanced nerve-evoked contractions more strongly in muscle cells 6 and 7 than cells 12 and 13. In situ hybridization indicated that FR expression was significantly greater in muscle cells 6 and 7 than 12 and 13. Taken together, these results indicate that DPKQDFMRFa can elicit cell-selective effects on muscle fibres. The ability of neuropeptides to work in a cell-selective manner on neurons and muscle cells may help explain why so many peptides are encoded in invertebrate and vertebrate genomes.
Resumo:
The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Morfología) UANL
Resumo:
It is not uncommon that a society facing a choice problem has also to choose the choice rule itself. In such situation voters’ preferences on alternatives induce preferences over the voting rules. Such a setting immediately gives rise to a natural question concerning consistency between these two levels of choice. If a choice rule employed to resolve the society’s original choice problem does not choose itself when it is also used in choosing the choice rule, then this phenomenon can be regarded as inconsistency of this choice rule as it rejects itself according to its own rationale. Koray (2000) proved that the only neutral, unanimous universally self-selective social choice functions are the dictatorial ones. Here we in troduce to our society a constitution, which rules out inefficient social choice rules. When inefficient social choice rules become unavailable for comparison, the property of self-selectivity becomes weaker and we show that some non-trivial self-selective social choice functions do exist. Under certain assumptions on the constitution we describe all of them.
Resumo:
BACKGROUND: HIV-1 Vpu targets newly synthesized CD4 receptor for rapid degradation by a process reminiscent of endoplasmic reticulum (ER)-associated protein degradation (ERAD). Vpu is thought to act as an adaptor protein, connecting CD4 to the ubiquitin (Ub)-proteasome degradative system through an interaction with beta-TrCP, a component of the SCFbeta-TrCP E3 Ub ligase complex. RESULTS: Here, we provide direct evidence indicating that Vpu promotes trans-ubiquitination of CD4 through recruitment of SCFbeta-TrCP in human cells. To examine whether Ub conjugation occurs on the cytosolic tail of CD4, we substituted all four Ub acceptor lysine residues for arginines. Replacement of cytosolic lysine residues reduced but did not prevent Vpu-mediated CD4 degradation and ubiquitination, suggesting that Vpu-mediated CD4 degradation is not entirely dependent on the ubiquitination of cytosolic lysines and as such might also involve ubiquitination of other sites. Cell fractionation studies revealed that Vpu enhanced the levels of ubiquitinated forms of CD4 detected in association with not only the ER membrane but also the cytosol. Interestingly, significant amounts of membrane-associated ubiquitinated CD4 appeared to be fully dislocated since they could be recovered following sodium carbonate salt treatment. Finally, expression of a transdominant negative mutant of the AAA ATPase Cdc48/p97 involved in the extraction of ERAD substrates from the ER membrane inhibited Vpu-mediated CD4 degradation. CONCLUSION: Taken together, these results are consistent with a model whereby HIV-1 Vpu targets CD4 for degradation by an ERAD-like process involving most likely poly-ubiquitination of the CD4 cytosolic tail by SCFbeta-TrCP prior to dislocation of receptor molecules across the ER membrane by a process that depends on the AAA ATPase Cdc48/p97.
Resumo:
Bien que ce soit un procédé industriel répandu, les films de copolymères à blocs préparés par trempage (« dip-coating ») sont moins étudiés que ceux obtenus par tournette (« spin-coating »). Pourtant, il est possible grâce à cette technique de contrôler précisément les caractéristiques de ces films. Au-delà de la méthode de fabrication, la capacité de modifier la morphologie des films trempés à l’aide d’autres facteurs externes est un enjeu primordial pour leur utilisation dans les nanotechnologies. Nous avons choisi, ici, d’étudier l’influence d’une petite molécule sur la morphologie de films supramoléculaires réalisés par « dip-coating » à partir de solutions de poly(styrène-b-4-vinyl pyridine) (PS-P4VP) dans le tétrahydrofurane (THF). En présence de 1-naphtol (NOH) et d’1-acide napthoïque (NCOOH), qui se complexent par pont hydrogène au bloc P4VP, ces films donnent, respectivement, une morphologie en nodules (sphères) et en stries (cylindres horizontaux). Des études par spectroscopie infrarouge ont permis de mesurer la quantité de petite molécule dans ces films minces, qui varie avec la vitesse de retrait mais qui s’avère être identique pour les deux petites molécules, à une vitesse de retrait donnée. Cependant, des études thermiques ont montré qu’une faible fraction de petite molécule est dispersée dans le PS (davantage de NOH que de NCOOH à cause de la plus faible liaison hydrogène du premier). La vitesse de retrait est un paramètre clé permettant de contrôler à la fois l’épaisseur et la composition du film supramoléculaire. L’évolution de l’épaisseur peut être modélisée par deux régimes récemment découverts. Aux faibles vitesses, l’épaisseur décroît (régime de capillarité), atteint un minimum, puis augmente aux vitesses plus élevées (régime de drainage). La quantité de petite molécule augmente aux faibles vitesses pour atteindre un plateau correspondant à la composition de la solution aux vitesses les plus élevées. Des changements de morphologie, à la fois liés à l’épaisseur et à la quantité de petite molécule, sont alors observés lorsque la vitesse de retrait est modifiée. Le choix du solvant est aussi primordial dans le procédé de « dip-coating » et a été étudié en utilisant le chloroforme, qui est un bon solvant pour les deux blocs. Il s’avère qu’à la fois la composition ainsi que la morphologie des films de PS-P4VP complexés sont différentes par rapport aux expériences réalisées dans le THF. Premièrement, la quantité de petite molécule reste constante avec la vitesse de retrait mais les films sont plus riches en NCOOH qu’en NOH. Deuxièmement, la morphologie des films contenant du NOH présente des stries ainsi que des lamelles à plat, tandis que seules ces dernières sont observables pour le NCOOH. Ce comportement est essentiellement dû à la quantité différente de petite molécule modulée par leur force de complexation différente avec le P4VP dans le chloroforme. Enfin, ces films ont été utilisés pour l’adsorption contrôlée de nanoparticules d’or afin de guider leur organisation sur des surfaces recouvertes de PS-P4VP. Avant de servir comme gabarits, un recuit en vapeurs de solvant permet soit d’améliorer l’ordre à longue distance des nodules de P4VP, soit de modifier la morphologie des films selon le solvant utilisé (THF ou chloroforme). Ils peuvent être ensuite exposés à une solution de nanoparticules d’or de 15 nm de diamètre qui permet leur adsorption sélective sur les nodules (ou stries) de P4VP.
Resumo:
The principal cause of mortality in patients with acute liver failure (ALF) is brain herniation resulting from intracranial hypertension caused by a progressive increase of brain water. In the present study, ex vivo high-resolution 1H-NMR spectroscopy was used to investigate the effects of ALF, with or without superimposed hypothermia, on brain organic osmolyte concentrations in relation to the severity of encephalopathy and brain edema in rats with ALF due to hepatic devascularization. In normothermic ALF rats, glutamine concentrations in frontal cortex increased more than fourfold at precoma stages, i.e. prior to the onset of severe encephalopathy, but showed no further increase at coma stages. In parallel with glutamine accumulation, the brain organic osmolytes myo-inositol and taurine were significantly decreased in frontal cortex to 63\% and 67\% of control values, respectively, at precoma stages (p<0.01), and to 58\% and 67\%, respectively, at coma stages of encephalopathy (p<0.01). Hypothermia, which prevented brain edema and encephalopathy in ALF rats, significantly attenuated the depletion of myo-inositol and taurine. Brain glutamine concentrations, on the other hand, did not respond to hypothermia. These findings demonstrate that experimental ALF results in selective changes in brain organic osmolytes as a function of the degree of encephalopathy which are associated with brain edema, and provides a further rationale for the continued use of hypothermia in the management of this condition.