927 resultados para Roundup Ready corn
Resumo:
Laboratory experiments were conducted to determine the efficacy of spinosad (a biopesticide), chlorpyrifos-methyl (an organophosphorus compound (OP)) and s-methoprene (a juvenile hormone analogue) applied alone and in binary combinations against five stored-grain beetles in wheat. There were three strains of Rhyzopertha dominica, and one strain each of Sitophilus oryzae, Tribolium castaneum, Oryzaephilus surinamensis and Cryptolestes ferrugineus. These strains were chosen to represent a range of possible resistant genotypes, exhibiting resistance to organophosphates, pyrethroids or methoprene. Treatments were applied at rates that are registered or likely to be registered in Australia. Adults were exposed to freshly treated wheat for 2 weeks, and the effects of treatments on mortality and reproduction were determined. No single protectant or protectant combination controlled all insect strains, based on the criterion of >99% reduction in the number of live F1 adults relative to the control. The most effective combinations were spinosad at 1 mg kg-1+chlorpyrifos-methyl at 10 mg kg-1 which controlled all strains except for OP-resistant O. surinamensis, and chlorpyrifos-methyl at 10 mg kg-1+s-methoprene at 0.6 mg kg-1 which controlled all strains except for methoprene-resistant R. dominica. The results of this study demonstrate the difficulty in Australia, and potentially other countries which use protectants, of finding protectant treatments to control a broad range of pest species in the face of resistance development.
Resumo:
Weighing lysimeters are the standard method for directly measuring evapotranspiration (ET). This paper discusses the construction, installation, and performance of two (1.52 m × 1.52 m × 2.13-m deep) repacked weighing lysimeters for measuring ET of corn and soybean in West Central Nebraska. The cost of constructing and installing each lysimeter was approximately US $12,500, which could vary depending on the availability and cost of equipment and labor. The resolution of the lysimeters was 0.0001 mV V-1, which was limited by the data processing and storage resolution of the datalogger. This resolution was equivalent to 0.064 and 0.078 mm of ET for the north and south lysimeters, respectively. Since the percent measurement error decreases with the magnitude of the ET measured, this resolution is adequate for measuring ET for daily and longer periods, but not for shorter time steps. This resolution would result in measurement errors of less than 5% for measuring ET values of ≥3 mm, but the percent error rapidly increases for lower ET values. The resolution of the lysimeters could potentially be improved by choosing a datalogger that could process and store data with a higher resolution than the one used in this study.
Resumo:
Compared to grain sorghums, sweet sorghums typically have lower grain yield and thick, tall stalks which accumulate high levels of sugar (sucrose, fructose and glucose). Unlike commercial grain sorghum (S. bicolor ssp. bicolor) cultivars, which are usually F1 hybrids, commercial sweet sorghums were selected as wild accessions or have undergone limited plant breeding. Although all sweet sorghums are classified within S. bicolor ssp. bicolor, their genetic relationship with grain sorghums is yet to be investigated. Ninety-five genotypes, including 31 sweet sorghums and 64 grain sorghums, representing all five races within the subspecies bicolor, were screened with 277 polymorphic amplified fragment length polymorphism (AFLP) markers. Cluster analysis separated older sweet sorghum accessions (collected in mid 1800s) from those developed and released during the early to mid 1900s. These groups were emphasised in a principle component analysis of the results such that sweet sorghum lines were largely distinguished from the others, particularly by a group of markers located on sorghum chromosomes SBI-08 and SBI-10. Other studies have shown that QTL and ESTs for sugar-related traits, as well as for height and anthesis, map to SBI-10. Although the clusters obtained did not group clearly on the basis of racial classification, the sweet sorghum lines often cluster with grain sorghums of similar racial origin thus suggesting that sweet sorghum is of polyphyletic origin within S. bicolor ssp. bicolor.
Resumo:
While cities increasingly attest to plans to make their resources accessible for people with disabilities, the realities of achieving the travel considered integral to urban life continue to be frustrating and prohibitive for this group. Accessing the basic opportunities of contemporary urban life now presupposes the supports and resources afforded by new mobilities, combining virtual and actual travel and communication in negotiating our work, leisure, connections with families and culture. For the researchers applying the new mobilities paradigm, this requires a focus which is suited to capturing movement and its spatial and temporal coordinates and should also turn to illuminate the darker side of these relationships: coerced immobility experienced by people with disabilities. This chapter discusses an approach to research and the development of design scenarios – concepts emerging from research that may inform design - that take seriously the role of movement, time and space in the achievement of valued connections by individuals with disabilities with particular reference to the journey to work. In particular we apply, in a case study, concepts of time and space that are relevant to the in situ experience of getting to work; raising questions regarding the way getting ready and travelling are experienced in the context of risk and contingency and the actual and potential role of the technical, material and social environment. We then respond to the analysis of this case with a discussion about the way emergent scenarios can imagine “possible or preferable futures” for the mobile citizenship of people with disabilities.
Resumo:
Two species of root-lesion nematode (predominantly Pratylenchus thornei but also P. neglectus) are widespread pathogens of wheat and other crops in Australia's northern grain belt, a subtropical region with deep, fertile clay soils and a summer-dominant rainfall pattern. Losses in grain yield from P. thornei can be as high as 70% for intolerant wheat cultivars. This review focuses on research which has led to the development of effective integrated management programs for these nematodes. It highlights the importance of correct identification in managing Pratylenchus species, reviews the plant breeding work done in developing tolerant and resistant cultivars, outlines the methods used to screen for tolerance and resistance, and discusses how planned crop sequencing with tolerant and partially resistant wheat cultivars, together with crops such as sorghum, sunflower, millets and canaryseed, can be used to reduce nematode populations and limit crop damage. The declining levels of soil organic matter in cropped soils are also discussed with reference to their effect on soil health and biological suppression of root-lesion nematodes.
Resumo:
Universities and teacher employment bodies seek new, cost-effective ways for graduating classroom-ready teachers. This study involved 32 final-year preservice teachers in an innovative school-university partnership teacher education program titled, the School-Community Integrated Learning (SCIL) pathway. Data were collected using a five-part Likert scale survey with extended written responses. Survey results showed that preservice teachers involved in the SCIL pathway learnt more about the teaching profession, which extended their usual university coursework. Furthermore, written responses suggested ways for advancing their understandings to ensure preservice teachers receive a quality school experience towards readiness for teaching.
Resumo:
Background: Plotless density estimators are those that are based on distance measures rather than counts per unit area (quadrats or plots) to estimate the density of some usually stationary event, e.g. burrow openings, damage to plant stems, etc. These estimators typically use distance measures between events and from random points to events to derive an estimate of density. The error and bias of these estimators for the various spatial patterns found in nature have been examined using simulated populations only. In this study we investigated eight plotless density estimators to determine which were robust across a wide range of data sets from fully mapped field sites. They covered a wide range of situations including animal damage to rice and corn, nest locations, active rodent burrows and distribution of plants. Monte Carlo simulations were applied to sample the data sets, and in all cases the error of the estimate (measured as relative root mean square error) was reduced with increasing sample size. The method of calculation and ease of use in the field were also used to judge the usefulness of the estimator. Estimators were evaluated in their original published forms, although the variable area transect (VAT) and ordered distance methods have been the subjects of optimization studies. Results: An estimator that was a compound of three basic distance estimators was found to be robust across all spatial patterns for sample sizes of 25 or greater. The same field methodology can be used either with the basic distance formula or the formula used with the Kendall-Moran estimator in which case a reduction in error may be gained for sample sizes less than 25, however, there is no improvement for larger sample sizes. The variable area transect (VAT) method performed moderately well, is easy to use in the field, and its calculations easy to undertake. Conclusion: Plotless density estimators can provide an estimate of density in situations where it would not be practical to layout a plot or quadrat and can in many cases reduce the workload in the field.
Resumo:
Aflatoxins are highly carcinogenic mycotoxins produced by two fungi, Aspergillus flavus and A. parasiticus, under specific moisture and temperature conditions before harvest and/or during storage of a wide range of crops including maize. Modelling of interactions between host plant and environment during the season can enable quantification of preharvest aflatoxin risk and its potential management. A model was developed to quantify climatic risks of aflatoxin contamination in maize using principles previously used for peanuts. The model outputs an aflatoxin risk index in response to seasonal temperature and soil moisture during the maize grain filling period using the APSIM's maize module. The model performed well in simulating climatic risk of aflatoxin contamination in maize as indicated by a significant R2 (P ≤ 0.01) between aflatoxin risk index and the measured aflatoxin B1 in crop samples, which was 0.69 for a range of rainfed Australian locations and 0.62 when irrigated locations were also included in the analysis. The model was further applied to determine probabilities of exceeding a given aflatoxin risk in four non-irrigated maize growing locations of Queensland using 106 years of historical climatic data. Locations with both dry and hot climates had a much higher probability of higher aflatoxin risk compared with locations having either dry or hot conditions alone. Scenario analysis suggested that under non-irrigated conditions the risk of aflatoxin contamination could be minimised by adjusting sowing time or selecting an appropriate hybrid to better match the grain filling period to coincide with lower temperature and water stress conditions.
Resumo:
Recent incidents of mycotoxin contamination (particularly aflatoxins and fumonisins) have demonstrated a need for an industry-wide management system to ensure Australian maize meets the requirements of all domestic users and export markets. Results of recent surveys are presented, demonstrating overall good conformity with nationally accepted industry marketing standards but with occasional samples exceeding these levels. This paper describes mycotoxin-related hazards inherent in the Australian maize production system and a methodology combining good agricultural practices and the hazard analysis critical control point framework to manage risk.
Resumo:
Mycotoxin contamination of Australian maize is neither common nor extensive, but has the capacity to seriously disrupt marketing. Low to moderate levels of aflatoxins and fumonisins can be widespread in some seasons, but zearalenone, nivalenol and deoxynivalenol are usually confined to small growing localities. Possible approaches to such situations were tested by an analysis of several case studies. It is concluded that communication and coordination across the industry, prediction and prevention of contamination, rapid detection and assessment of contamination, effective use of contaminated maize and breeding for resistance comprise a useful set of strategies for managing mycotoxins in maize.
Resumo:
Two field experiments using maize (Pioneer 31H50) and three watering regimes [(i) irrigated for the whole crop cycle, until anthesis, (ii) not at all (experiment 1) and (iii) fully irrigated and rain grown for the whole crop cycle (experiment 2)] were conducted at Gatton, Australia, during the 2003-04 season. Data on crop ontogeny, leaf, sheath and internode lengths and leaf width, and senescence were collected at 1- to 3-day intervals. A glasshouse experiment during 2003 quantified the responses of leaf shape and leaf presentation to various levels of water stress. Data from experiment 1 were used to modify and parameterise an architectural model of maize (ADEL-Maize) to incorporate the impact of water stress on maize canopy characteristics. The modified model produced accurate fitted values for experiment 1 for final leaf area and plant height, but values during development for leaf area were lower than observed data. Crop duration was reasonably well fitted and differences between the fully irrigated and rain-grown crops were accurately predicted. Final representations of maize crop canopies were realistic. Possible explanations for low values of leaf area are provided. The model requires further development using data from the glasshouse study and before being validated using data from experiment 2 and other independent data. It will then be used to extend functionality in architectural models of maize. With further research and development, the model should be particularly useful in examining the response of maize production to water stress including improved prediction of total biomass and grain yield. This will facilitate improved simulation of plant growth and development processes allowing investigation of genotype by environment interactions under conditions of suboptimal water supply.
Resumo:
This paper reports on the use of APSIM - Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004-05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004-05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004-05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.
Resumo:
The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.
Resumo:
Aphids can cause substantial damage to cereals, oilseeds and legumes through direct feeding and through the transmission of plant pathogenic viruses. Aphid-resistant varieties are only available for a limited number of crops. In Australia, growers often use prophylactic sprays to control aphids, but this strategy can lead to non-target effects and the development of insecticide resistance. Insecticide resistance is a problem in one aphid pest of Australian grains in Australia, the green peach aphid (Myzus persicae). Molecular analyses of field-collected samples demonstrate that amplified E4 esterase resistance to organophosphate insecticides is widespread in Australian grains across Australia. Knockdown resistance to pyrethroids is less abundant, but has an increased frequency in areas with known frequent use of these insecticides. Modified acetylcholinesterase resistance to dimethyl carbamates, such as pirimicarb, has not been found in Australia, nor has resistance to imidacloprid. Australian grain growers should consider control options that are less likely to promote insecticide resistance, and have reduced impacts on natural enemies. Research is ongoing in Australia and overseas to provide new strategies for aphid management in the future.
Resumo:
There are two major pests of sorghum in Australia, the sorghum midge, Stenodiplosis sorghicola (Coquillett), and the corn earworm, Helicoverpa armigera (Hübner). During the past 10 years the management of these pests has undergone a revolution, due principally to the development of sorghum hybrids with resistance to sorghum midge. Also contributing has been the adoption of a nucleopolyhedrovirus for the management of corn earworm. The practical application of these developments has led to a massive reduction in the use of synthetic insecticides for the management of major pests of sorghum in Australia. These changes have produced immediate economic, environmental and social benefits. Other flow-on benefits include providing flexibility in planting times, the maintenance of beneficial arthropods and utilisation of sorghum as a beneficial arthropod nursery, a reduction in midge populations and a reduction in insecticide resistance development in corn earworm. Future developments in sorghum pest management are discussed.