916 resultados para Round and square balers
Resumo:
Mononuclear copper(II) complexes of tri- and tetra-dentate tripodal ligands containing phenolic hydroxyl and benzimidazole or pyridine groups have been isolated. They are of the type (CuL(X)].nH2O, [CuL(H2O)]X.nH2O or [CuL].nH2O where X = Cl-, ClO4-, N3- or NCS- and n = 0-4. The electronic spectra of all the complexes exhibit a broad absorption band around 14000 cm-1 and the polycrystalline as well as the frozen-solution EPR spectra are axial, indicating square-based geometries. The crystal structure of [CuL(Cl)] [HL = (2-hydroxy-5-nitrobenzyl)bis(2-pyridyl-methyl)amine] revealed a square-pyramidal geometry around Cu(II). The mononuclear complex crystallises in the triclinic space group P1BAR with a = 6.938(1), b = 11.782(6), c = 12.678(3) angstrom and alpha = 114.56(3), beta = 92.70(2), gamma = 95.36(2)-degrees. The co-ordination plane is comprised of one tertiary amine and two pyridine nitrogens and a chloride ion. The phenolate ion unusually occupies the axial site, possibly due to the electron-withdrawing p-nitro group. The enhanced pi delocalisation involving the p-nitrophenolate donor elevates the E1/2 values. The spectral and electrochemical results suggest the order of donor strength as nitrophenolate < pyridine < benzimidazole in the tridentate and nitrophenolate < benzimidazole < pyridine in the tetradentate ligand complexes.
Resumo:
A systematic investigation of monatomic spherical sorbates in the supercages of zeolites Y and A by molecular dynamics technique is presented. Rates of intercage diffusion, rates of cage visits, and the diffusion coefficients have been calculated as a function of the sorbate-zeolite interaction strength. These properties exhibit markedly different dependences on interaction strength for the two zeolites. The observed behavior is shown to be a consequence of the two principal mechanisms of intercage diffusion and the energetic barrier associated with them. The diffusion coefficient and other properties associated with intercage diffusion are found to be directly proportional to the reciprocal of the square of the sorbate diameter when the sorbate diameter is significantly smaller than the window diameter. As the sorbate diameter increases, a peak is observed in all the transport properties investigated including the diffusion coefficient. We call this surprising effect as the ring or levitation effect and it explains several anomalous results reported in the literature and suggests a breakdown of the geometrical criterion for diffusion of sorbates. It shows that under certain conditions nongeometrical factors play a major role and geometrical factors become secondary in the determination of the molecular sieve property. A generalized parameter has been proposed which suggests conditions under which one can expect the ring or levitation effect in any porous medium. Inverse size selectivity becomes operative under these conditions.
Resumo:
Recent computer simulations on zeolites Y and A have found that the diffusion coefficient and the rate of intercage diffusion exhibit, apart from a linear dependence on the reciprocal of the square of the sorbate diameter, an anomalous peak as sorbate diameter approaches the window diameter. Here we report molecular dynamics simulations of zeolite NaA incorporating framework flexibility as a function of sorbate diameter in order to verify the existence of anomalous diffusion. Results suggest persistence of anomalous diffusion or ring effect. This suggests that the anomalous behavior is a general effect characteristic of zeolites Y and A. The barrier for diffusion across the eight-ring window is seen to be negative and is found to decrease with sorbate size. The effect of sorbate on the cage motion has also been investigated. Results suggest that the window expands during intercage migration only if the sorbate size is comparable to the window diameter. Flexible cage simulations yield a higher value for the diffusion coefficient and also the rate of intercage diffusion. This increase has been shown to be due to an increase in the intercage diffusions via the centralized diffusion mode rather than the surface-mediated mode. It is shown that this increase arises from an increase in the single particle density distribution in the region near the cage center.
Resumo:
In the direction of arrival (DOA) estimation problem, we encounter both finite data and insufficient knowledge of array characterization. It is therefore important to study how subspace-based methods perform in such conditions. We analyze the finite data performance of the multiple signal classification (MUSIC) and minimum norm (min. norm) methods in the presence of sensor gain and phase errors, and derive expressions for the mean square error (MSE) in the DOA estimates. These expressions are first derived assuming an arbitrary array and then simplified for the special case of an uniform linear array with isotropic sensors. When they are further simplified for the case of finite data only and sensor errors only, they reduce to the recent results given in [9-12]. Computer simulations are used to verify the closeness between the predicted and simulated values of the MSE.
Resumo:
The impulse response of a typical wireless multipath channel can be modeled as a tapped delay line filter whose non-zero components are sparse relative to the channel delay spread. In this paper, a novel method of estimating such sparse multipath fading channels for OFDM systems is explored. In particular, Sparse Bayesian Learning (SBL) techniques are applied to jointly estimate the sparse channel and its second order statistics, and a new Bayesian Cramer-Rao bound is derived for the SBL algorithm. Further, in the context of OFDM channel estimation, an enhancement to the SBL algorithm is proposed, which uses an Expectation Maximization (EM) framework to jointly estimate the sparse channel, unknown data symbols and the second order statistics of the channel. The EM-SBL algorithm is able to recover the support as well as the channel taps more efficiently, and/or using fewer pilot symbols, than the SBL algorithm. To further improve the performance of the EM-SBL, a threshold-based pruning of the estimated second order statistics that are input to the algorithm is proposed, and its mean square error and symbol error rate performance is illustrated through Monte-Carlo simulations. Thus, the algorithms proposed in this paper are capable of obtaining efficient sparse channel estimates even in the presence of a small number of pilots.
Resumo:
Time evolution of mean-squared displacement based on molecular dynamics for a variety of adsorbate-zeolite systems is reported. Transition from ballistic to diffusive behavior is observed for all the systems. The transition times are found to be system dependent and show different types of dependence on temperature. Model calculations on a one-dimensional system are carried out which show that the characteristic length and transition times are dependent on the distance between the barriers, their heights, and temperature. In light of these findings, it is shown that it is possible to obtain valuable information about the average potential energy surface sampled under specific external conditions.
Resumo:
The complex [Cu-II (theo)(2)(H2O)(3)].2H(2)O (theo = theophylline) was obtained from aqueous solution. The crystals belong to the monoclinic system, space group P2(1)/n, and are reflection twins about the (001) face. The structure was solved using data from a twinned crystal and refined to final R and R(W) values of 0.069 and 0.064, respectively. Copper has a square-pyramidal coordination with two thee molecules coordinating through N(7) at equatorial positions. The remaining sites are occupied by water molecules. O(6) of one of the thee molecules is at the other axial site at a longer distance of 3.18 Angstrom. This could lead to an alternate (4+1+1) octahedral coordination geometry for Cu-II. The packing is stabilized by stacking interactions between the theophylline moieties at an average separation of 3.46 Angstrom.
Resumo:
The synthesis, X-ray crystal structure, and magnetic properties of an angular trinuclear copper(II) complex [Cu3(O2CMC)4(bpy)3(H2O)](PF6)2 (1), obtained from a reaction of Cu2(O2CMe)4(H2O)2 With 2,2'-bipyridine (bpy) and NH4PF6 in ethanol, are reported. Complex 1 crystallizes in triclinic space group P1BAR with a = 11.529(1) angstrom, b = 12.121(2) angstrom, c = 17.153(2) angstrom, alpha = 82.01(1)-degrees, beta = 79.42(1)-degrees, gamma = 89.62(1)-degrees, and Z = 2. A total of 6928 data with I > 2.5sigma(I) were refined to R = 0.0441 and R(w) = 0.0557. The structure consists of a trinuclear core bridged by four acetate ligands showing different bonding modes. The coordination geometry at each copper is distorted square-pyramidal with a CuN2O2...O chromophore. The Cu...Cu distances are 3.198(1) angstrom, 4.568(1) angstrom, and 6.277(1) angstrom. There are two monoatomic acetate bridges showing Cu-O-Cu angles of 93.1(1) and 97.5(1)-degrees. Magnetic studies in the temperature range 39-297 K show the presence of a strong ferromagnetically coupled dicopper(II) unit (2J = +158 cm-1) and an essentially isolated copper(II) center (2J' = -0.4 cm-1) in 1. The EPR spectra display an axial spectrum giving g(parallel-to) = 2.28 (A(parallel-to) = 160 X 10(-4) cm-1) and g(perpendicular-to) = 2.06 (A(perpendicular-to) = 12 X 10(-4) cm-1) for the normal copper and two intense isotropic signals with g values 2.70 and 1.74 for the strongly coupled copper pair. The structural features of 1 compare well with the first generation models for ascorbate oxidase.
Resumo:
Layered lanthanide sulfate compounds with three different structures have been prepared and characterized. The compounds C10H10N2] La(SO4)(2)]center dot 2H(2)O (I), C10H10N2] La(SO4)(2)(H2O)(2)](2) (Ha), C10H10N2]Pr(SO4)(2)(H2O)(2)](2) (IIb), C10H10N2]Nd-2(SO4)(4)(H2O)(2)](2) (IIIa), C10H10N2]Sm-2(SO4)(4)(H2O)(2)](2) (IIIb), and C10H10N2]Eu-2(SO4)(4)(H2O)(2)] 2 (IIIC) have anionic lanthanide sulfate layers separated by protonated bipyridine molecules. The layers are formed by the connectivity between the lanthanide polyhedra and sulfate tetrahedra. The formation of a two-dimensional La-O-La layer (la), Pr-O-Pr chains (IIb), and a tetramer cluster (IIIa) is noteworthy. The compounds exhibit honeycomb (I), square (IIa, IIb), and honeycomb (IIIa-IIIc) net arrangements, when the connectivity between the lanthanide ions is considered. Optical studies indicate the observation of characteristic metal-centered emission at room temperature. The Nd compound (IIIa) exhibits a two-photon upconversion behavior.
Resumo:
A parallel matrix multiplication algorithm is presented, and studies of its performance and estimation are discussed. The algorithm is implemented on a network of transputers connected in a ring topology. An efficient scheme for partitioning the input matrices is introduced which enables overlapping computation with communication. This makes the algorithm achieve near-ideal speed-up for reasonably large matrices. Analytical expressions for the execution time of the algorithm have been derived by analysing its computation and communication characteristics. These expressions are validated by comparing the theoretical results of the performance with the experimental values obtained on a four-transputer network for both square and irregular matrices. The analytical model is also used to estimate the performance of the algorithm for a varying number of transputers and varying problem sizes. Although the algorithm is implemented on transputers, the methodology and the partitioning scheme presented in this paper are quite general and can be implemented on other processors which have the capability of overlapping computation with communication. The equations for performance prediction can also be extended to other multiprocessor systems.
Resumo:
A novel approach for lossless as well as lossy compression of monochrome images using Boolean minimization is proposed. The image is split into bit planes. Each bit plane is divided into windows or blocks of variable size. Each block is transformed into a Boolean switching function in cubical form, treating the pixel values as output of the function. Compression is performed by minimizing these switching functions using ESPRESSO, a cube based two level function minimizer. The minimized cubes are encoded using a code set which satisfies the prefix property. Our technique of lossless compression involves linear prediction as a preprocessing step and has compression ratio comparable to that of JPEG lossless compression technique. Our lossy compression technique involves reducing the number of bit planes as a preprocessing step which incurs minimal loss in the information of the image. The bit planes that remain after preprocessing are compressed using our lossless compression technique based on Boolean minimization. Qualitatively one cannot visually distinguish between the original image and the lossy image and the value of mean square error is kept low. For mean square error value close to that of JPEG lossy compression technique, our method gives better compression ratio. The compression scheme is relatively slower while the decompression time is comparable to that of JPEG.
Resumo:
The Cu atoms in aquabis(tert-butyl acetoacetato)copper(II),[Cu(C8H13O3)(2)(H2O)], and bis(dipivaloylmethanido)copper(II), [Cu(C11H19O2)(2)], adopt square-pyramidal and planar conformations, respectively, with average Cu--O distances of 1.933 Angstrom in the former (not including the water ligand) and 1.892 Angstrom in the latter. It is interesting to note that the lability of the tert-butyl and methyl groups in both structures, which renders even the location of the terminal C atoms difficult, is reduced at T = 130 K, enabling location of all the protons in the difference Fourier map.
Resumo:
This paper presents recursive algorithms for fast computation of Legendre and Zernike moments of a grey-level image intensity distribution. For a binary image, a contour integration method is developed for the evaluation of Legendre moments using only the boundary information. A method for recursive calculation of Zernike polynomial coefficients is also given. A square-to-circular image transformation scheme is introduced to minimize the computation involved in Zernike moment functions. The recursive formulae can also be used in inverse moment transforms to reconstruct the original image from moments. The mathematical framework of the algorithms is given in detail, and illustrated with binary and grey-level images.
Resumo:
The principle of the conservation of bond orders during radical-exchange reactions is examined using Mayer's definition of bond orders. This simple intuitive approximation is not valid in a quantitative sense. Ab initio results reveal that free valences (or spin densities) develop on the migrating atom during reactions. For several examples of hydrogen-transfer reactions, the sum of the reaction coordinate bond orders in the transition state was found to be 0.92 +/- 0.04 instead of the theoretical 1.00 because free valences (or spin densities) develop on the migrating atom during reactions. It is shown that free valence is almost equal to the square of the spin density on the migrating hydrogen atom and the maxima in the free valence (or spin density) profiles coincide (or nearly coincide) with the saddle points in the corresponding energy profiles.
Resumo:
The linear quadridentate ligand N,N'-bis(benzimidazoI-2-ylethyl)ethane-l,2-diamine (L') and its 1 - methylbenzimidazole analogue (L2) and homologues form 1 : 1 complexes with Cu(CIO,),; L' also forms complexes of the types CuL'X, where X = NO,, PF,, Br or CI and CuL'(X)Y where X = CI or Br and Y = CIO, or Br. Deep blue CuL1Br,*2H20 crystallizes in the monoclinic space group C2/c with Z = 4, a = 9.91 9(2), b = 16.626(3), c = 14.1 02(3) le\ and p = 94.39(2)". The structure was solved by Patterson and Fourier difference methods and refined by the least-squares technique to R = 0.064 for 2195 independent reflections with / > 1.50(/). The molecule lies on a two-fold axis symmetrically around Cu". The co-ordination around Cu" is found to be square planar with two amino nitrogens and two benzimidazole nitrogens forming the equatorial plane [CU-N 1.983(3) and 2.037(4) A]. The bromides are at longer distances [3.349(1) A] in axial sites. Ligand field and EPR spectra indicate that one bromide or chloride ion is axially co-ordinated to Cu" in [CuL1l2+. This ion exhibits quasi-reversible redox behaviour. Electrochemical studies of the dihalides in methanol have established the presence of [CuL'X,], [CuL'(X)]+ and [CuL'I2+ in equilibrium. In complexes with 565 [CuL4I2+ [L4 = N,Nbis( benzimidazol-2-ylmethyl)ethane-l,2-diamine] and 555 [CuL3] [L3 = N,N'-bis(1 -methylbenzimidazol- 2-ylmethyl)propane-l,3-diamine] chelate rings, Cull does not seem to lie in the N, square plane, as revealed by their low A values and irreversible electrochemical behaviour. The Cu"-Cu' redox potentials in methanol are in the order [CuL1I2+ < [CuL3I2+ < [CuL4I2+; this illustrates that sixmembered chelate rings are suitable to stabilize Cu", when CU-N 0 interactions are favourable.