906 resultados para Rockwell hardness
Resumo:
Halloumi cheese was produced from 11 bovine milks with fat contents of 1.61-4.04%, giving a range of 32-53% fat in dry matter (FDM) in the cheeses. Starter culture and/or microparticulated whey protein (Simplesse((R)) 100(E)) was also added to selected batches of milk. Hardness decreased with increasing FDM, with increase in moisture and with lower pH. On sensory evaluation, there was an increase in preference score with FDM (R-2 = 0.8). Inclusion of microparticulated whey protein may have had a fat mimetic effect, as preference scores otherwise decreased with increasing protein levels (R-2 = 0.75).
Resumo:
The effects of high pressure (to 800 MPa) applied at different temperatures (20-70 degreesC) for 20 min on beef post-rigor longissimus dorsi texture were studied. Texture profile analysis showed that when heated at ambient pressure there was the expected increase in hardness with increasing temperature and when pressure was applied at room temperature there was again the expected increase in hardness with increasing pressure. Similar results to those found at ambient temperature were found when pressure was applied at 40 degreesC. However, at higher temperatures, 60 and 70 degreesC it was found that pressures of 200 MPa caused large and significant decreases in hardness. The results found for hardness were mirrored by those for gumminess and chewiness. To further understand the changes in texture observed, intact beef longissimus dorsi samples and extracted myofibrils were both subjected to differential scanning calorimetry after being subjected to the same pressure/temperature regimes. As expected collagen was reasonably inert to pressure and only at temperatures of 60-70 degreesC was it denatured/unfolded. However, myosin was relatively easily unfolded by both pressure and temperature and when pressure denatured a new and modified structure was formed of low thermal stability. Although this new structure had low thermal stability at ambient pressure it still formed in both the meat and myofibrils when pressure was applied at 60 degreesC. It seems unlikely that structurally induced changes can be a major cause of the significant loss of hardness observed when beef is treated at high temperature (60-70 degreesC) and 200 MPa and it is suggested that accelerated proteolysis under these conditions is the major cause. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A whey salts mixture was used as a partial substitute for sodium chloride to provide a modified Na:K ratio (1:3.4) in the manufacture of white salted cheese using ultrafiltration. Reduction of chymosin addition from 20 to 8 mu L kg(-1) of cheese was also investigated. Variation of salt and chymosin levels did not result in any significant differences in composition and physicochemical properties. The rates of proteolysis in terms of water-soluble nitrogen (WSN) and nitrogen soluble in 12% trichloroacetic acid (TCA-SN) were affected by chymosin levels but not by salt treatment. Urea-PAGE electrophoretic analysis of caseins from the cheeses manufactured using three levels of chymosin and two salt types showed that the hydrolysis of alpha(s1)-casein was higher than for beta-caseins but the differences between the cheeses were not significant (P > 0.05). The chymosin level did not have a significant effect (P > 0.05) on hardness and fracturability, suggesting that any variation in hardness due to the initial hydrolysis was being confounded by other variables. Cheeses including the whey salts product were harder and more fracturable (P < 0.01) than the cheese treated with NaCl only. Both hardness and fracturability values decreased (P < 0.05) over the maturation period. The scores for bitterness were low; neither the effects of salt nor chymosin levels were significant (P > 0.05). (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study demonstrated that both chymosin and salt-in-moisture (SM) were important factors for proteolysis in the manufacture of ultrafiltrated white-salted cheese, with significant effects on water-soluble nitrogen and nitrogen soluble in trichloroacetic acid. In contrast, the levels of free amino acids were not significantly affected by chymosin and salt treatments. The cheeses made using high levels of chymosin with low SM had lower levels of residual α(s1)- and β-casein at the end of ripening. On texture profile analysis, the hardness and fracturability of the cheeses significantly increased with SM and decreased during ripening. Increases in chymosin significantly contributed to the overall weakening of the structure throughout ripening. Bitter flavour was detected after 12 weeks in the cheese made with the higher chymosin level and lower SM, which could be the result of accumulation of γ-casein fractions. The sensory data indicated that the hedonic responses for low chymosin with low SM cheeses were good and acceptable in flavour, which may be due to the moderate levels of proteolysis products.
Resumo:
White-salted cheeses were prepared from ultrafiltered (UF) cows' milk and salted to give final salt-in-moisture (SM) levels of 2.5, 3.2 and 4.0%. The cheeses were stored at 5degreesC and 10degreesC for up to 15 weeks. The microflora was dominated by lactic acid bacteria (LAB) but some mould growth was evident within 15 weeks at all SM levels and both temperatures. Levels of water-soluble nitrogen (WSN), attributed to chymosin activity, increased significantly with time, the rate being inversely proportional to the SM level and increasing with storage temperature. Similar effects were noted for trichloroacetic acid-soluble nitrogen (TCA-SN) and free amino acid (FAA) levels, both of which would also be affected by bacterial protease activity. The proteolytic activity was reflected by changes in the hardness and fracturability of the cheeses.
Resumo:
The objective of this study was to determine the potential of mid-infrared spectroscopy coupled with multidimensional statistical analysis for the prediction of processed cheese instrumental texture and meltability attributes. Processed cheeses (n = 32) of varying composition were manufactured in a pilot plant. Following two and four weeks storage at 4 degrees C samples were analysed using texture profile analysis, two meltability tests (computer vision, Olson and Price) and mid-infrared spectroscopy (4000-640 cm(-1)). Partial least squares regression was used to develop predictive models for all measured attributes. Five attributes were successfully modelled with varying degrees of accuracy. The computer vision meltability model allowed for discrimination between high and low melt values (R-2 = 0.64). The hardness and springiness models gave approximate quantitative results (R-2 = 0.77) and the cohesiveness (R-2 = 0.81) and Olson and Price meltability (R-2 = 0.88) models gave good prediction results. (c) 2006 Elsevier Ltd. All rights reserved..
Resumo:
This work studied the effect of multi-layer coating of alginate beads on the survival of encapsulated Lactobacillus plantarum in simulated gastric solution and during storage in pomegranate juice at 4 °C. Uncoated, single and double chitosan coated beads were examined. The survival of the cells in simulated gastric solution (pH 1.5) was improved in the case of the chitosan coated beads by 0.5–2 logs compared to the uncoated beads. The cell concentration in pomegranate juice after six weeks of storage was higher than 5.5 log CFU/mL for single and double coated beads, whereas for free cells and uncoated beads the cells died after 4 weeks of storage. In simulated gastric solution, the size of the beads decreased and their hardness increased with time; however, the opposite trend was observed for pomegranate juice, indicating that there is no correlation between cell survival and the hardness of the beads.
Resumo:
The aim of this work was to compare alginate and pectin beads for improving the survival of Lactobacillus plantarum and Bifidobacterium longum during storage in pomegranate and cranberry juice, and to evaluate the influence of various coating materials, including chitosan, gelatin and glucomannan on cell survival and on the size and hardness of the beads. In pomegranate juice, free cells of L. plantarum died within 4 weeks of storage and those of B. longum within 1 week; in cranberry juice both types of cells died within one week. Encapsulation within either alginate or pectin beads improved cell survival considerably, but coating of the beads with chitosan or gelatin improved it even further; coating with glucomannan did not have any positive effect. The double gelatin coated pectin beads gave the highest protection among all types of beads, as a final concentration of approximately 108 CFU/mL and 106 CFU/mL for both L. plantarum and B. longum was obtained after 6 weeks of storage in pomegranate and cranberry juice, respectively. The good protection could be attributed to the very strong interaction between the two polymers, as measured by turbidity experiments, leading to the formation of a polyelectrolyte complex. It was also shown that the coating was able to inhibit the penetration of gallic acid within the beads, which was used in this study as a model phenolic compound with antimicrobial activity; this is a likely mechanism through which the beads were able to protect the cells from the antimicrobial activity of phenolic compounds present in both types of juices. Despite their good protective effect, the pectin beads were considerably softer than the alginate beads, an issue that should be addressed in order to increase their mechanical stability.
Resumo:
The replacement of fat and sugar in cakes is a challenge as they have an important effect on the structural and sensory properties. Moreover, there is the possibility to incorporate an additional value using novel replacers. In this work, inulin and oligofructose were used as fat and sugar replacers, respectively. Different combinations of replacement levels were investigated: fat replacement (0 and 50 %) and sugar replacement (0, 20, 30, 40 and 50 %). Simulated microbaking was carried out to study bubble size distribution during baking. Batter viscosity and weight loss during baking were also analysed. Cake characteristics were studied in terms of cell crumb structure, height, texture and sensory properties. Fat and sugar replacement gave place to batters with low apparent viscosity values. During heating, bubbles underwent a marked expansion in replaced cakes if compared to the control cake. The low batter stability in fat-replaced samples increased bubble movement, giving place to cakes with bigger cells and less height than the control. Sugar-replaced samples had smaller and fewer cells and lower height than the control. Moreover, sugar replacement decreased hardness and cohesiveness and in- creased springiness, which could be related with a denser crumb and an easily crumbled product. Regarding the sensory analysis, a replacement up to 50 % of fat and 30 % of sugar, separately and simultaneously, did not change remarkably the overall acceptability of the cakes. However, the sponginess and the sweetness could be improved in all the replaced cakes, according to the Just About Right scales.
Resumo:
The functional effects of lipase (0.003 and 0.006 g/100 g of flour) and emulsifier (0.5 and 1 g/100 g of flour) on fat-replaced (0%, 50% and 70%) batters and cakes with inulin (0, 7.5 and 10 g/100 g/of flour, respectively) were studied. Emulsifier addition significantly lowered the relative density of the batter. Emulsifier incorporation increased the viscoelastic properties of the batter. In contrast, lipase incorporation decreased the degree of system structuring. The evolution of the dynamic moduli and complex viscosity with rising temperatures were studied. Batters with 1 g/100 g emulsifier displayed a significantly lower complex viscosity during heating, resulting in collapsed cakes. Differential scanning calorimetry results revealed that the thermal setting in the control cakes occurred at higher temperatures, and accordingly, greater cake expansion was observed. Cakes with 0.003 g/100 g lipase or 0.5 g/100 g emulsifier displayed volume and crumb cell structure that were similar to those of control cakes. Higher concentrations of both improvers gave rise to cakes with lower volume, higher hardness and lower springiness. During storage time, cakes with lipase displayed lower hardness. Both improvers, at low concentrations, could improve certain physical characteristics, such as crumb structure, of fat-replaced cakes with inulin.
Resumo:
Sponge cakes have traditionally been manufactured using multistage mixing methods to enhance potential foam formation by the eggs. Today, use of all-in (single-stage) mixing methods is superseding multistage methods for large-scale batter preparation to reduce costs and production time. In this study, multistage and all-in mixing procedures and three final high-speed mixing times (3, 5, and 15 min) for sponge cake production were tested to optimize a mixing method for pilot-scale research. Mixing for 3 min produced batters with higher relative density values than did longer mixing times. These batters generated well-aerated cakes with high volume and low hardness. In contrast, after 5 and 15 min of high-speed mixing, batters with lower relative density and higher viscosity values were produced. Although higher bubble incorporation and retention were observed, longer mixing times produced better developed gluten networks, which stiffened the batters and inhibited bubble expansion during mixing. As a result, these batters did not expand properly and produced cakes with low volume, dense crumb, and high hardness values. Results for all-in mixing were similar to those for the multistage mixing procedure in terms of the physical properties of batters and cakes (i.e., relative density, elastic moduli, volume, total cell area, hardness, etc.). These results suggest the all-in mixing procedure with a final high-speed mixing time of 3 min is an appropriate mixing method for pilot-scale sponge cake production. The advantages of this method are reduced energy costs and production time.
Resumo:
Fried products impose a health concerns due to considerable amount of oil they contain. Production of snack foods with minimal oil content and good management of oil during frying to minimise the production of toxic compounds continue to be challenging aims. This paper aims to investigate the possibility of producing a fat-free food snack by replacing frying oil with a non-fat medium. Glucose was melted and its temperature was then brought to 185°C and used to fry potato strips, to obtain a product referred here as glucose fries. The resulting product was compared with French fries prepared conventionally under conditions that resulted in similar final moisture content. The resulting products were also examined for crust formation, texture parameters, colour development and glucose content. Stereo microscope images showed that similar crusts were formed in the glucose fries and French fries. Texture parameters were found to be similar for both products at 5mm and 2 mm penetration depth. The maximum hardness at 2mm penetration depth was also similar for both products, but different from cooked potato. The colour development which characterised French fries was also observed in glucose fries. The glucose content in glucose fries was found to be twice the content of French fries, which is to be expected since glucose absorbed or adhered to the surface. In conclusion, glucose fries, with similar texture and colour characteristics to that of French fries, can be prepared by using a non-fat frying medium.
Resumo:
The scale up of Spark Plasma Sintering (SPS) for the consolidation of large square monoliths (50 × 50 × 3 mm3) of thermoelectric material is demonstrated and the properties of the fabricated samples compared with those from laboratory scale SPS. The SPS processing of n-type TiS2 and p-type Cu10.4Ni1.6Sb4S13 produces highly dense compacts of phase pure material. Electrical and thermal transport property measurements reveal that the thermoelectric performance of the consolidated n- and p-type materials is comparable with that of material processed using laboratory scale SPS, with ZT values that approach 0.8 and 0.35 at 700 K for Cu10.4Ni1.6Sb4S13 and TiS2, respectively. Mechanical properties of the consolidated materials shows that large-scale SPS processing produces highly homogeneous materials with hardness and elastic moduli that deviate little from values obtained on materials processed on the laboratory scale.
Resumo:
Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm(2)), Jet Lite 4000 Plus (1230mW/cm(2)), and Ultralume Led 5 (790 mW/cm(2)) and immersion media were artificial saliva, Coke(R), tea and coffee, totaling 12 experimental groups. Specimens (10 mm X 2 mm) were immersed in each respective Solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37 degrees C +/- 1 degrees C between immersion periods. Topography and chemical analysis was qualitative. Findings: Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon. potassium and phosphorus. For Coke(R), excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion: Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke(R) affected material`s surface more than did the other tested drinks. Microsc. Res. Tech. 73:176-181, 2010. (c) 2009 Wiley-Liss Inc.
Resumo:
The sum of wheat flour and corn starch was replaced by 10, 20, or 30% whole amaranth flour in both conventional (C) and reduced fat (RF) pound cakes. and the effects on physical and sensory properties of the cakes were investigated. RF presented 33% fat reduction. The increasing amaranth levels darkened crust and crumb of cakes, which decreased color acceptability. Fresh amaranth-containing cakes had similar texture characteristics to (he controls, evaluated both instrumentally and sensorially. Sensory evaluation revealed that replacement by 30% amaranth flour decreased C cakes overall acceptability scores, clue to its lower specific volume and darker color. Amaranth flour levels had no significant effect on overall acceptability of RF cakes. Hence, the sum of wheat flour and corn starch could be successfully replaced by up to 20% amaranth flour in C and up to 30% in RF pound cakes without negatively affecting sensory quality in fresh cakes. Moisture losses for all the cakes were similar, approximate to 1% per day during storage. After six days of storage, both C and RF amaranth-containing cakes had higher hardness and chewiness values than control cakes. Further experiments involving sensory evaluation during storage are necessary to determine the exact limit of amaranth flour replacement.