916 resultados para Rich and Suter diagrams
Resumo:
The age of the subducting Nazca Plate off Chile increases northwards from 0 Ma at the Chile Triple Junction (46°S) to 37 Ma at the latitude of Valparaíso (32°S). Age-related variations in the thermal state of the subducting plate impact on (a) the water influx to the subduction zone, as well as on (b) the volumes of water that are released under the continental forearc or, alternatively, carried beyond the arc. Southern Central Chile is an ideal setting to study this effect, because other factors for the subduction zone water budget appear constant. We determine the water influx by calculating the crustal water uptake and by modeling the upper mantle serpentinization at the outer rise of the Chile Trench. The water release under forearc and arc is determined by coupling FEM thermal models of the subducting plate with stability fields of water-releasing mineral reactions for upper and lower crust and hydrated mantle. Results show that both the influx of water stored in, and the outflux of water released from upper crust, lower crust and mantle vary drastically over segment boundaries. In particular, the oldest and coldest segments carry roughly twice as much water into the subduction zone as the youngest and hottest segments, but their release flux to the forearc is only about one fourth of the latter. This high variability over a subduction zone of < 1500 km length shows that it is insufficient to consider subduction zones as uniform entities in global estimates of subduction zone fluxes. This article is protected by copyright. All rights reserved.
Resumo:
Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (d44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of d44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, d44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the d44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.
Resumo:
Ocean drilling has revealed that, although a minor mineral phase, native Cu ubiquitously occurs in the oceanic crust. Cu isotope systematics for native Cu from a set of occurrences from volcanic basement and sediment cover of the oceanic crust drilled at several sites in the Pacific, Atlantic and Indian oceans constrains the sources of Cu and processes that produced Cu**0. We propose that both hydrothermally-released Cu and seawater were the sources of Cu at these sites. Phase stability diagrams suggest that Cu**0 precipitation is favored only under strictly anoxic, but not sulfidic conditions at circum-neutral pH even at low temperature. In the basaltic basement, dissolution of primary igneous and potentially hydrothermal Cu-sulfides leads to Cu**0 precipitation along veins. The restricted Cu-isotope variations (delta 65Cu = 0.02-0.19 per mil) similar to host volcanic rocks suggest that Cu**0 precipitation occurred under conditions where Cu+-species were dominant, precluding Cu redox fractionation. In contrast, the Cu-isotope variations observed in the Cu**0 from sedimentary layers yield larger Cu-isotope fractionation (delta 65Cu = 0.41-0.95 per mil) suggesting that Cu**0 precipitation involved redox processes during the diagenesis, with potentially seawater as the primary Cu source. We interpret that native Cu precipitation in the basaltic basement is a result of low temperature (20°-65 °C) hydrothermal processes under anoxic, but not H2S-rich conditions. Consistent with positive delta 65Cu signatures, the sediment cover receives major Cu contribution from hydrogenous (i.e., seawater) sources, although hydrothermal contribution from plume fallout cannot be entirely discarded. In this case, disseminated hydrogenous and/or hydrothermal Cu might be diagenetically remobilized and reprecipitated as Cu**0 in reducing microenvironment.
Resumo:
Coring during Ocean Drilling Program and Deep Sea Drilling Project Legs 163, 152, 104, 81, and 38 recovered sequences of altered basalt from North Atlantic seaward-dipping reflector sequences (SDRS) erupted during the initial rifting of Greenland from northern Europe and likely associated with excessive mantle temperatures caused by an impacting mantle plume head. Cr-rich spinel is found abundantly as inclusions and groundmass crystals within the olivine-rich lavas of Hole 917A (Leg 152) cored into the Southeast Greenland SDRS, but only rarely as inclusions within plagioclase in the lavas of the Vøring Plateau SDRS, and it is absent from other cored SDRS lavas from the Rockall Plateau and Southeast Greenland. Eruptive melt compositions determined from inferred, thermodynamically-defined, spinel-melt exchange equilibria indicate that the most primitive melts represented by Hole 917A basalts have Mg/(Mg + Fe2+) at least as high as 0.70 and approach near-primary mantle melt compositions. In contrast, Cr-rich spinels from Hole 338 (Leg 38) lavas on the Vøring Plateau SDRS give evidence for melt with Mg/(Mg + Fe2+) only as high as 0.64. This study underlines that primitive melts similar to those from Hole 917A comprise only a small fraction of the eruptive North Atlantic SDRS melts, and that most SDRS basalts were, in fact, too evolved to have precipitated Cr-rich spinel, with true melt Mg/(Mg + Fe2+) likely below 0.60. The evolved nature of the SDRS basalts implies large amounts of fractionation at the base of the crust or deep within it, consistent with seismic results that indicate an abnormally thick Layer 3 underlying the SDRS.