969 resultados para Reynolds Average Navier-Stokes (RANS)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At high Reynolds numbers, wake flows become more globally unstable when they are confined within a duct or between two flat plates. At Reynolds numbers around 100, however, global analyses suggest that such flows become more stable when confined, while local analyses suggest that they become more unstable. The aim of this paper is to resolve this apparent contradiction by examining a set of obstacle-free wakes. In this theoretical and numerical study, we combine global and local stability analyses of planar wake flows at $\mathit{Re}= 100$ to determine the effect of confinement. We find that confinement acts in three ways: it modifies the length of the recirculation zone if one exists, it brings the boundary layers closer to the shear layers, and it can make the flow more locally absolutely unstable. Depending on the flow parameters, these effects work with or against each other to destabilize or stabilize the flow. In wake flows at $\mathit{Re}= 100$ with free-slip boundaries, flows are most globally unstable when the outer flows are 50 % wider than the half-width of the inner flow because the first and third effects work together. In wake flows at $\mathit{Re}= 100$ with no-slip boundaries, confinement has little overall effect when the flows are weakly confined because the first two effects work against the third. Confinement has a strong stabilizing effect, however, when the flows are strongly confined because all three effects work together. By combining local and global analyses, we have been able to isolate these three effects and resolve the apparent contradictions in previous work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modern CFD process consists of mesh generation, flow solving and post-processing integrated into an automated workflow. During the last several years we have developed and published research aimed at producing a meshing and geometry editing system, implemented in an end-to-end parallel, scalable manner and capable of automatic handling of large scale, real world applications. The particular focus of this paper is the associated unstructured mesh RANS flow solver and the porting of it to GPU architectures. After briefly describing the solver itself, the special issues associated with porting codes using unstructured data structures are discussed - followed by some application examples. Copyright © 2011 by W.N. Dawes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulent combustion of stoichiometric hydrogen-air mixture is simulated using direct numerical simulation methodology, employing complex chemical kinetics. Two flame configurations, freely propagating and V-flames stabilized behind a hot rod, are simulated. The results are analyzed to study the influence of flame configuration on the turbulence-scalar interaction, which is critical for the scalar gradient generation processes. The result suggests that this interaction process is not influenced by the flame configuration and the flame normal is found to align with the most extensive strain in the region of intense heat release. The combustion in the rod stabilized flame is found to be flamelet like in an average sense and the growth of flame-brush thickness with the downstream distance is represented well by Taylor theory of turbulent diffusion, when the flame-brushes are non-interacting. The thickness is observed to saturate when the flame-brushes interact, which is found to occur in the simulated rod stabilized flame with Taylor micro-scale Reynolds number of 97. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct numerical simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with a range of different turbulent Reynolds numbers has been used to assess the performance of algebraic flame surface density (FSD) models based on a fractal representation of the flame wrinkling factor. The turbulent Reynolds number Ret has been varied by modifying the Karlovitz number Ka and the Damköhler number Da independently of each other in such a way that the flames remain within the thin reaction zones regime. It has been found that the turbulent Reynolds number and the Karlovitz number both have a significant influence on the fractal dimension, which is found to increase with increasing Ret and Ka before reaching an asymptotic value for large values of Ret and Ka. A parameterisation of the fractal dimension is presented in which the effects of the Reynolds and the Karlovitz numbers are explicitly taken into account. By contrast, the inner cut-off scale normalised by the Zel'dovich flame thickness ηi/δz does not exhibit any significant dependence on Ret for the cases considered here. The performance of several algebraic FSD models has been assessed based on various criteria. Most of the algebraic models show a deterioration in performance with increasing the LES filter width. © 2012 Mohit Katragadda et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract-Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art Banged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air Bow to be reduced and provide a means of identifying and assessing the various parameters that control the air Bow. The mathematical model is formulated in terms of the Stokes steam function, ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained Bow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions. | Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art flanged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air flow to be reduced and provide a means of identifying and assessing the various parameters that control the air flow. The mathematical model is formulated in terms of the Stokes steam function, Ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained flow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements and predictions are made of a short cowl co-flowing jet with a bypass ratio of 8:1. The Reynolds number for computations and measurements are matched at 300,000 and the Mach numbers representative of realistic jet conditions with core and co flow velocities of 240m/s and 216m/s respectively. The low Reynolds number of the measurements makes the case well suited to the assessment of large eddy resolving computational strategies. Also, the nozzle concentricity was carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both two dimensional coincident LDA and PIV systems. The computational simulations are completed on a modest 12×106 mesh. The simulation is now being run on a 50×106 mesh using hybrid RANSNLES (Numerical Large Eddy Simulation). Close to the nozzle wall a k-l RANS model is used. For an axisymmetric jet, comparison is made between simulations which use NLES, RANSNLES and also a simple imposed velocity profile where the nozzle is not modeled. The use of a near wall RANS model is shown to be beneficial. When compared with the measurements the NLES results are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the design of algorithms for the collective optimization of a cost function defined over average quantities in the presence of limited communication. We argue that several meaningful collective optimization problems can be formulated in this way. As an application of the proposed approach, we propose a novel algorithm that achieves synchronization or balancing in phase models of coupled oscillators under mild connectedness assumptions on the (possibly time-varying and unidirectional) communication graphs. © 2006 IEEE.