984 resultados para Residential electricity simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusarium Head Blight (FHB) is a disease of great concern in wheat (Triticum aestivum). Due to its relatively narrow susceptible phase and environmental dependence, the pathosystem is suitable for modeling. In the present work, a mechanistic model for estimating an infection index of FHB was developed. The model is process-based driven by rates, rules and coefficients for estimating the dynamics of flowering, airborne inoculum density and infection frequency. The latter is a function of temperature during an infection event (IE), which is defined based on a combination of daily records of precipitation and mean relative humidity. The daily infection index is the product of the daily proportion of susceptible tissue available, infection frequency and spore cloud density. The model was evaluated with an independent dataset of epidemics recorded in experimental plots (five years and three planting dates) at Passo Fundo, Brazil. Four models that use different factors were tested, and results showed all were able to explain variation for disease incidence and severity. A model that uses a correction factor for extending host susceptibility and daily spore cloud density to account for post-flowering infections was the most accurate explaining 93% of the variation in disease severity and 69% of disease incidence according to regression analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its non-storability, electricity must be produced at the same time that it is consumed, as a result prices are determined on an hourly basis and thus analysis becomes more challenging. Moreover, the seasonal fluctuations in demand and supply lead to a seasonal behavior of electricity spot prices. The purpose of this thesis is to seek and remove all causal effects from electricity spot prices and remain with pure prices for modeling purposes. To achieve this we use Qlucore Omics Explorer (QOE) for the visualization and the exploration of the data set and Time Series Decomposition method to estimate and extract the deterministic components from the series. To obtain the target series we use regression based on the background variables (water reservoir and temperature). The result obtained is three price series (for Sweden, Norway and System prices) with no apparent pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-state silicon detectors have replaced conventional ones in almost all recent high-energy physics experiments. Pixel silicon sensors don't have any alternative in the area near the interaction point because of their high resolution and fast operation speed. However, present detectors hardly withstand high radiation doses. Forthcoming upgrade of the LHC in 2014 requires development of a new generation of pixel detectors which will be able to operate under ten times increased luminosity. A planar fabrication technique has some physical limitations; an improvement of the radiation hardness will reduce sensitivity of a detector. In that case a 3D pixel detector seems to be the most promising device which can overcome these difficulties. The objective of this work was to model a structure of the 3D stripixel detector and to simulate electrical characteristics of the device. Silvaco Atlas software has been used for these purposes. The structures of single and double sided dual column detectors with active edges were described using special command language. Simulations of these detectors have shown that electric field inside an active area has more uniform distribution in comparison to the planar structure. A smaller interelectrode space leads to a stronger field and also decreases the collection time. This makes the new type of detectors more radiation resistant. Other discovered advantages are the lower full depletion voltage and increased charge collection efficiency. So the 3D stripixel detectors have demonstrated improved characteristics and will be a suitable replacement for the planar ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amount of installed wind power has been growing exponentially during the past ten years. As wind turbines have become a significant source of electrical energy, the interactions between the turbines and the electric power network need to be studied more thoroughly than before. Especially, the behavior of the turbines in fault situations is of prime importance; simply disconnecting all wind turbines from the network during a voltage drop is no longer acceptable, since this would contribute to a total network collapse. These requirements have been a contributor to the increased role of simulations in the study and design of the electric drive train of a wind turbine. When planning a wind power investment, the selection of the site and the turbine are crucial for the economic feasibility of the installation. Economic feasibility, on the other hand, is the factor that determines whether or not investment in wind power will continue, contributing to green electricity production and reduction of emissions. In the selection of the installation site and the turbine (siting and site matching), the properties of the electric drive train of the planned turbine have so far been generally not been taken into account. Additionally, although the loss minimization of some of the individual components of the drive train has been studied, the drive train as a whole has received less attention. Furthermore, as a wind turbine will typically operate at a power level lower than the nominal most of the time, efficiency analysis in the nominal operating point is not sufficient. This doctoral dissertation attempts to combine the two aforementioned areas of interest by studying the applicability of time domain simulations in the analysis of the economicfeasibility of a wind turbine. The utilization of a general-purpose time domain simulator, otherwise applied to the study of network interactions and control systems, in the economic analysis of the wind energy conversion system is studied. The main benefits of the simulation-based method over traditional methods based on analytic calculation of losses include the ability to reuse and recombine existing models, the ability to analyze interactions between the components and subsystems in the electric drive train (something which is impossible when considering different subsystems as independent blocks, as is commonly done in theanalytical calculation of efficiencies), the ability to analyze in a rather straightforward manner the effect of selections other than physical components, for example control algorithms, and the ability to verify assumptions of the effects of a particular design change on the efficiency of the whole system. Based on the work, it can be concluded that differences between two configurations can be seen in the economic performance with only minor modifications to the simulation models used in the network interaction and control method study. This eliminates the need ofdeveloping analytic expressions for losses and enables the study of the system as a whole instead of modeling it as series connection of independent blocks with no lossinterdependencies. Three example cases (site matching, component selection, control principle selection) are provided to illustrate the usage of the approach and analyze its performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A coupled system simulator, based on analytical circuit equations and a finite element method (FEM) model of the motor has been developed and it is used to analyse a frequency-converterfed industrial squirrel-cage induction motor. Two control systems that emulate the behaviour of commercial direct-torque-controlled (DTC) and vector-controlled industrial frequency converters have been studied, implemented in the simulation software and verified by extensive laboratory tests. Numerous factors that affect the operation of a variable speed drive (VSD) and its energy efficiency have been investigated, and their significance in the simulation of the VSD results has been studied. The dependency of the frequency converter, induction motor and system losses on the switching frequency is investigated by simulations and measurements at different speeds for both the vector control and the DTC. Intensive laboratory measurements have been carried out to verify the simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airlift reactors are pneumatically agitated reactors that have been widely used in chemical, petrochemical, and bioprocess industries, such as fermentation and wastewater treatment. Computational Fluid Dynamics (CFD) has become more popular approach for design, scale-up and performance evaluation of such reactors. In the present work numerical simulations for internal-loop airlift reactors were performed using the transient Eulerian model with CFD package, ANSYS Fluent 12.1. The turbulence in the liquid phase is described using κ- ε the model. Global hydrodynamic parameters like gas holdup, gas velocity and liquid velocity have been investigated for a range of superficial gas velocities, both with 2D and 3D simulations. Moreover, the study of geometry and scale influence on the reactor have been considered. The results suggest that both, geometry and scale have significant effects on the hydrodynamic parameters, which may have substantial effects on the reactor performance. Grid refinement and time-step size effect have been discussed. Numerical calculations with gas-liquid-solid three-phase flow system have been carried out to investigate the effect of solid loading, solid particle size and solid density on the hydrodynamic characteristics of internal loop airlift reactor with different superficial gas velocities. It was observed that averaged gas holdup is significantly decreased with increasing slurry concentration. Simulations show that the riser gas holdup decreases with increase in solid particle diameter. In addition, it was found that the averaged solid holdup increases in the riser section with the increase of solid density. These produced results reveal that CFD have excellent potential to simulate two-phase and three-phase flow system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity distribution network operation (NO) models are challenged as they are expected to continue to undergo changes during the coming decades in the fairly developed and regulated Nordic electricity market. Network asset managers are to adapt to competitive technoeconomical business models regarding the operation of increasingly intelligent distribution networks. Factors driving the changes for new business models within network operation include: increased investments in distributed automation (DA), regulative frameworks for annual profit limits and quality through outage cost, increasing end-customer demands, climatic changes and increasing use of data system tools, such as Distribution Management System (DMS). The doctoral thesis addresses the questions a) whether there exist conditions and qualifications for competitive markets within electricity distribution network operation and b) if so, identification of limitations and required business mechanisms. This doctoral thesis aims to provide an analytical business framework, primarily for electric utilities, for evaluation and development purposes of dedicated network operation models to meet future market dynamics within network operation. In the thesis, the generic build-up of a business model has been addressed through the use of the strategicbusiness hierarchy levels of mission, vision and strategy for definition of the strategic direction of the business followed by the planning, management and process execution levels of enterprisestrategy execution. Research questions within electricity distribution network operation are addressed at the specified hierarchy levels. The results of the research represent interdisciplinary findings in the areas of electrical engineering and production economics. The main scientific contributions include further development of the extended transaction cost economics (TCE) for government decisions within electricity networks and validation of the usability of the methodology for the electricity distribution industry. Moreover, DMS benefit evaluations in the thesis based on the outage cost calculations propose theoretical maximum benefits of DMS applications equalling roughly 25% of the annual outage costs and 10% of the respective operative costs in the case electric utility. Hence, the annual measurable theoretical benefits from the use of DMS applications are considerable. The theoretical results in the thesis are generally validated by surveys and questionnaires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of models in Aspen plus was built to simulate the direct synthesis process of hydrogen peroxide in a micro-reactor system. This process model can be used to carry out material balance calculation under various experimental conditions. Three thermodynamic property methods were compared by calculating gas solubility and Uniquac-RK method was finally selected for process model. Two different operation modes with corresponding operation conditions were proposed as the starting point of future experiments. Simulations for these two modes were carried out to get the information of material streams. Moreover, some hydrodynamic parameters such as gas/liquid superficial velocity, gas holdup were also calculated with improved process model. These parameters proved the proposed experimental conditions reasonable to some extent. The influence of operation conditions including temperature, pressure and circulation ratio was analyzed for the first operation mode, where pure oxygen was fed into dissolving tank and hydrogen-carbon dioxide mixture was fed into microreactor directly. The preferred operation conditions for the system are low temperature (2°C) and high pressure (30 bar) in dissolving tank. High circulation ratio might be good in the sense that more oxygen could be dissolved and fed into reactor for reactions, but meanwhile hydrodynamics of microreactor should be considered. Furthermore, more operation conditions of reactor gas/liquid feeds in both of two operation modes were proposed to provide guidance for future experiment design and corresponding hydrodynamic parameters were also calculated. Finally, safety issue was considered from thermodynamic point of view and there is no explosion danger at given experimental plan since the released reaction heat will not cause solvent vaporization inside the microchannels. The improvement of process model still needs further study based on the future experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of coating layer properties is becoming increasingly important as a result of an emerging demand for novel coated paper-based products and an increasing popularity of new coating application methods. The governing mechanisms of microstructure formation dynamics during consolidation and drying are nevertheless, still poorly understood. Some of the difficulties encountered by experimental methods can be overcome by the utilisation of numerical modelling and simulation-based studies of the consolidation process. The objective of this study was to improve the fundamental understanding of pigment coating consolidation and structure formation mechanisms taking place on the microscopic level. Furthermore, it is aimed to relate the impact of process and suspension properties to the microstructure of the coating layer. A mathematical model based on a modified Stokesian dynamics particle simulation technique was developed and applied in several studies of consolidation-related phenomena. The model includes particle-particle and particle-boundary hydrodynamics, colloidal interactions, Born repulsion, and a steric repulsion model. The Brownian motion and a free surface model were incorporated to enable the specific investigation of consolidation and drying. Filter cake stability was simulated in various particle systems, and subjected to a range of base substrate absorption rates and system temperatures. The stability of the filter cake was primarily affected by the absorption rate and size of particles. Temperature was also shown to have an influence. The consolidation of polydisperse systems, with varying wet coating thicknesses, was studied using imposed pilot trial and model-based drying conditions. The results show that drying methods have a clear influence on the microstructure development, on small particle distributions in the coating layer and also on the mobility of particles during consolidation. It is concluded that colloidal properties can significantly impact coating layer shrinkage as well as the internal solids concentration profile. Visualisations of particle system development in time and comparison of systems at different conditions are useful in illustrating coating layer structure formation mechanisms. The results aid in understanding the underlying mechanisms of pigment coating layer consolidation. Guidance is given regarding the relationship between coating process conditions and internal coating slurry properties and their effects on the microstructure of the coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the thesis was to create three tutorials for MeVEA Simulation Software to instruct the new users to the modeling methodology used in the MeVEA Simulation Software. MeVEA Simulation Software is a real-time simulation software based on multibody dynamics. The simulation software is designed to create simulation models of complete mechatronical system. The thesis begins with a more detail description of the MeVEA Simulation Software and its components. The thesis presents the three simulation models and written theory of the steps of model creation. The first tutorial introduces the basic features which are used in most simulation models. The basic features include bodies, constrains, forces, basic hydraulics and motors. The second tutorial introduces the power transmission components, tyres and user input definitions for the different components in power transmission systems. The third tutorial introduces the definitions of two different types of collisions and collision graphics used in MeVEA Simulation Software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Simulation techniques are spreading rapidly in medicine. Suc h resources are increasingly concentrated in Simulation Laboratories. The MSRP-USP is structuring such a laboratory and is interested in the prevalence of individual initiatives that could be centralized there. The MSRP-USP currently has five full-curriculum courses in the health sciences: Medicine, Speech Therapy, Physical Therapy, Nutrition, and Occupational Therapy, all consisting of core disciplines. GOAL: To determine the prevalence of simulation techniques in the regular courses at MSRP-USP. METHODS: Coordinators of disciplines in the various courses were interviewed using a specifically designed semi-structured questionnaire, and all the collected data were stored in a dedicated database. The disciplines were grouped according to whether they used (GI) or did not use (GII) simulation resources. RESULTS AND DISCUSSION: 256 disciplines were analyzed, of which only 18.3% used simulation techniques, varying according to course: Medicine (24.7.3%), Occupational Therapy (23.0%), Nutrition (15.9%), Physical Therapy (9.8%), and Speech Therapy (9.1%). Computer simulation programs predominated (42.5%) in all five courses. The resources were provided mainly by MSRP-USP (56.3%), with additional funding coming from other sources based on individual initiatives. The same pattern was observed for maintenance. There was great interest in centralizing the resources in the new Simulation Laboratory in order to facilitate maintenance, but there was concern about training and access to the material. CONCLUSIONS: 1) The MSRP-USP simulation resources show low complexity and are mainly limited to computer programs; 2) Use of simulation varies according to course, and is most prevalent in Medicine; 3) Resources are scattered across several locations, and their acquisition and maintenance depend on individual initiatives rather than central coordination or curricular guidelines

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maailman energian kulutuksen lisääntymisen ja ilmastonmuutoksen myötä energiantuotannossa joudutaan jatkuvasti sopeutumaan muuttuviin tilanteisiin ja haasteisiin. Polttoteknillisiä haasteita aiheuttavat pelto- ja kierrätyspolttoaineet ovat lisäämässä osuuttaan uusiutuvien polttoaineiden joukossa. Jotta kyseisiä haasteellisia polttoaineita pystytään hyödyntämään, täytyy niiden aiheuttamat ongelmat tuntea ja laitevalmistajien kehittää niiden hyödyntämiseen sopivaa tekniikkaa. Tässä diplomityössä käydään läpi tulevaisuudessa käytettävät polttoaineet, nykyiset päästörajat, kiinteiden polttoaineiden poltto- ja kaasutustekniikat sekä likaantumis-, kuonaantumis- ja korroosiomekanismit voimalaitoskattiloissa. Työssä tutkitaan, onko haasteellisten polttoaineiden käyttöön investoiminen järkevää ja mikä nykypäivän tekniikoista on kannattavin. Myös välitulistuksen, lauhdeperän ja apujäähdyttimen kannattavuuksia vertaillaan sähkön ja lämmön yhteistuotannossa. Tuloksiksi saatiin, että edullisten peltobiomassojen ja kierrätyspolttoaineiden käyttäminen, joko perinteisten polttoaineiden seassa tai pääpolttoaineena, on nykyhinnoilla perinteisiin polttoaineisiin verrattuna kannattavaa. Investoiminen kierrätyspolttoaineiden valmistuslaitteisiin maksimoi kierrätyspolttoaineista saatavaa hyötyä. Välitulistuksen todettiin soveltuvan huonosti vastapaineprosessiin, sillä siitä saatava sähköntuotannon lisäys on hyvin pieni. Lauhdeperän ja apujäähdyttimen vertailuissa huomattiin, että lauhdeperä on kannattava investointi, jos sähkön ja lämmön hintaero pysyy tarpeeksi suurena. Haasteellisilla polttoaineilla pystytään pienentämään kasvihuonepäästöjä ja korvaamaan fossiilisten polttoaineiden käyttöä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar radiation is an important factor for plant growth, being its availability to understory crops strongly modified by trees in an Agroforestry System (AFS). Coffee trees (Coffea arabica - cv. Obatã IAC 1669-20) were planted at a 3.4 x 0.9 m spacing inside and aside rows of monocrops of 12 year-old rubber trees (Hevea spp.), in Piracicaba-SP, Brazil (22º42'30" S, 47º38'00" W - altitude: 546m). One-year-old coffee plants exposed to 25; 30; 35; 40; 45; 80; 90; 95 and 100% of the total solar radiation were evaluated according to its biophysical parameters of solar radiation interception and capture. The Goudriaan (1977) adapted by Bernardes et al. (1998) model for radiation attenuation fit well to the measured data. Coffee plants tolerate a decrease in solar radiation availability to 50% without undergoing a reduction on growth and LAI, which was approximately 2m².m-2 under this condition. Further reductions on the availability of solar radiation caused a reduction in LAI (1.5m².m-2), thus poor land cover and solar radiation interception, resulting in growth reduction.