866 resultados para Reproducing Kernel


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of 18 coupled Chemistry Climate Models (CCMs) in the Tropical Tropopause Layer (TTL) is evaluated using qualitative and quantitative diagnostics. Trends in tropopause quantities in the tropics and the extratropical Upper Troposphere and Lower Stratosphere (UTLS) are analyzed. A quantitative grading methodology for evaluating CCMs is extended to include variability and used to develop four different grades for tropical tropopause temperature and pressure, water vapor and ozone. Four of the 18 models and the multi-model mean meet quantitative and qualitative standards for reproducing key processes in the TTL. Several diagnostics are performed on a subset of the models analyzing the Tropopause Inversion Layer (TIL), Lagrangian cold point and TTL transit time. Historical decreases in tropical tropopause pressure and decreases in water vapor are simulated, lending confidence to future projections. The models simulate continued decreases in tropopause pressure in the 21st century, along with ∼1K increases per century in cold point tropopause temperature and 0.5–1 ppmv per century increases in water vapor above the tropical tropopause. TTL water vapor increases below the cold point. In two models, these trends are associated with 35% increases in TTL cloud fraction. These changes indicate significant perturbations to TTL processes, specifically to deep convective heating and humidity transport. Ozone in the extratropical lowermost stratosphere has significant and hemispheric asymmetric trends. O3 is projected to increase by nearly 30% due to ozone recovery in the Southern Hemisphere (SH) and due to enhancements in the stratospheric circulation. These UTLS ozone trends may have significant effects in the TTL and the troposphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamburg atmospheric general circulation model ECHAM3 at T106 resolution (1.125' lat.Aon.) has considerable skill in reproducing the observed seasonal reversal of mean sea level pressure, the location of the summer heat low as well as the position of the monsoon trough over the Indian subcontinent. The present-day climate and its seasonal cycle are realistically simulated by the model over this region. The model simulates the structure, intensity, frequency, movement and lifetime of monsoon depressions remarkably well. The number of monsoon depressions/storms simulated by the model in a year ranged from 5 to 12 with an average frequency of 8.4 yr-', not significantly different from the observed climatology. The model also simulates the interannual variability in the formation of depressions over the north Bay of Bengal during the summer monsoon season. In the warmer atmosphere under doubled CO2 conditions, the number of monsoon depressions/cyclonic storms forming in Indian seas in a year ranged from 5 to 11 with an average frequency of 7.6 yr-', not significantly different from those inferred in the control run of the model. However, under doubled CO2 conditions, fewer depressions formed in the month of June. Neither the lowest central pressure nor the maximum wind speed changes appreciably in monsoon depressions identified under simulated enhanced greenhouse conditions. The analysis suggests there will be no significant changes in the number and intensity of monsoon depressions in a warmer atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we report on a study conducted using the Middle Atmospheric Nitrogen TRend Assessment (MANTRA) balloon measurements of stratospheric constituents and temperature and the Canadian Middle Atmosphere Model (CMAM). Three different kinds of data are used to assess the inter-consistency of the combined dataset: single profiles of long-lived species from MANTRA 1998, sparse climatologies from the ozonesonde measurements during the four MANTRA campaigns and from HALOE satellite measurements, and the CMAM climatology. In doing so, we evaluate the ability of the model to reproduce the measured fields and to thereby test our ability to describe mid-latitude summertime stratospheric processes. The MANTRA campaigns were conducted at Vanscoy, Saskatchewan, Canada (52◦ N, 107◦ W)in late August and early September of 1998, 2000, 2002 and 2004. During late summer at mid-latitudes, the stratosphere is close to photochemical control, providing an ideal scenario for the study reported here. From this analysis we find that: (1) reducing the value for the vertical diffusion coefficient in CMAM to a more physically reasonable value results in the model better reproducing the measured profiles of long-lived species; (2) the existence of compact correlations among the constituents, as expected from independent measurements in the literature and from models, confirms the self-consistency of the MANTRA measurements; and (3) the 1998 measurements show structures in the chemical species profiles that can be associated with transport, adding to the growing evidence that the summertime stratosphere can be much more disturbed than anticipated. The mechanisms responsible for such disturbances need to be understood in order to assess the representativeness of the measurements and to isolate longterm trends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a new sparse kernel density estimator using a forward constrained regression framework, within which the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Our main contribution is to derive a recursive algorithm to select significant kernels one at time based on the minimum integrated square error (MISE) criterion for both the selection of kernels and the estimation of mixing weights. The proposed approach is simple to implement and the associated computational cost is very low. Specifically, the complexity of our algorithm is in the order of the number of training data N, which is much lower than the order of N2 offered by the best existing sparse kernel density estimators. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to those of the classical Parzen window estimate and other existing sparse kernel density estimators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter takes the example of local African beekeeping to explore how the forest can act as an important locus for men's work in Western Tanzania. Here we scrutinise how beekeeping enables its practitioners to situate themselves in the forest locality and observe how the social relationships, interactions and everyday practices entailed in living and working together are a means through which beekeepers generate a sense of belonging and identity. As part and parcel of this process, men transmit their skills to a new generation, thus reproducing themselves and their social environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider in this paper the solvability of linear integral equations on the real line, in operator form (λ−K)φ=ψ, where and K is an integral operator. We impose conditions on the kernel, k, of K which ensure that K is bounded as an operator on . Let Xa denote the weighted space as |s|→∞}. Our first result is that if, additionally, |k(s,t)|⩽κ(s−t), with and κ(s)=O(|s|−b) as |s|→∞, for some b>1, then the spectrum of K is the same on Xa as on X, for 0kernel takes the form k(s,t)=κ(s−t)z(t), with , , and κ(s)=O(|s|−b) as |s|→∞, for some b>1. As an example where kernels of this latter form occur we discuss a boundary integral equation formulation of an impedance boundary value problem for the Helmholtz equation in a half-plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a Nystr¨om/product integration method for a class of second kind integral equations on the real line which arise in problems of two-dimensional scalar and elastic wave scattering by unbounded surfaces. Stability and convergence of the method is established with convergence rates dependent on the smoothness of components of the kernel. The method is applied to the problem of acoustic scattering by a sound soft one-dimensional surface which is the graph of a function f, and superalgebraic convergence is established in the case when f is infinitely smooth. Numerical results are presented illustrating this behavior for the case when f is periodic (the diffraction grating case). The Nystr¨om method for this problem is stable and convergent uniformly with respect to the period of the grating, in contrast to standard integral equation methods for diffraction gratings which fail at a countable set of grating periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers general second kind integral equations of the form(in operator form φ − kφ = ψ), where the functions k and ψ are assumed known, with ψ ∈ Y, the space of bounded continuous functions on R, and k such that the mapping s → k(s, · ), from R to L1(R), is bounded and continuous. The function φ ∈ Y is the solution to be determined. Conditions on a set W ⊂ BC(R, L1(R)) are obtained such that a generalised Fredholm alternative holds: If W satisfies these conditions and I − k is injective for all k ∈ W then I − k is also surjective for all k ∈ W and, moreover, the inverse operators (I − k) − 1 on Y are uniformly bounded for k ∈ W. The approximation of the kernel in the integral equation by a sequence (kn) converging in a weak sense to k is also considered and results on stability and convergence are obtained. These general theorems are used to establish results for two special classes of kernels: k(s, t) = κ(s − t)z(t) and k(s, t) = κ(s − t)λ(s − t, t), where κ ∈ L1(R), z ∈ L∞(R), and λ ∈ BC((R\{0}) × R). Kernels of both classes arise in problems of time harmonic wave scattering by unbounded surfaces. The general integral equation results are here applied to prove the existence of a solution for a boundary integral equation formulation of scattering by an infinite rough surface and to consider the stability and convergence of approximation of the rough surface problem by a sequence of diffraction grating problems of increasingly large period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider second kind integral equations of the form x(s) - (abbreviated x - K x = y ), in which Ω is some unbounded subset of Rn. Let Xp denote the weighted space of functions x continuous on Ω and satisfying x (s) = O(|s|-p ),s → ∞We show that if the kernel k(s,t) decays like |s — t|-q as |s — t| → ∞ for some sufficiently large q (and some other mild conditions on k are satisfied), then K ∈ B(XP) (the set of bounded linear operators on Xp), for 0 ≤ p ≤ q. If also (I - K)-1 ∈ B(X0) then (I - K)-1 ∈ B(XP) for 0 < p < q, and (I- K)-1∈ B(Xq) if further conditions on k hold. Thus, if k(s, t) = O(|s — t|-q). |s — t| → ∞, and y(s)=O(|s|-p), s → ∞, the asymptotic behaviour of the solution x may be estimated as x (s) = O(|s|-r), |s| → ∞, r := min(p, q). The case when k(s,t) = к(s — t), so that the equation is of Wiener-Hopf type, receives especial attention. Conditions, in terms of the symbol of I — K, for I — K to be invertible or Fredholm on Xp are established for certain cases (Ω a half-space or cone). A boundary integral equation, which models three-dimensional acoustic propaga-tion above flat ground, absorbing apart from an infinite rigid strip, illustrates the practical application and sharpness of the above results. This integral equation mod-els, in particular, road traffic noise propagation along an infinite road surface sur-rounded by absorbing ground. We prove that the sound propagating along the rigid road surface eventually decays with distance at the same rate as sound propagating above the absorbing ground.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the problem of propagation from a monofrequency coherent line source above a plane of homogeneous surface impedance. The solution of this problem occurs in the kernel of certain boundary integral equation formulations of acoustic propagation above an impedance boundary, and the discussion of the paper is motivated by this application. The paper starts by deriving representations, as Laplace-type integrals, of the solution and its first partial derivatives. The evaluation of these integral representations by Gauss-Laguerre quadrature is discussed, and theoretical bounds on the truncation error are obtained. Specific approximations are proposed which are shown to be accurate except in the very near field, for all angles of incidence and a wide range of values of surface impedance. The paper finishes with derivations of partial results and analogous Laplace-type integral representations for the case of a point source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper considers second kind equations of the form (abbreviated x=y + K2x) in which and the factor z is bounded but otherwise arbitrary so that equations of Wiener-Hopf type are included as a special case. Conditions on a set are obtained such that a generalized Fredholm alternative is valid: if W satisfies these conditions and I − Kz, is injective for each z ε W then I − Kz is invertible for each z ε W and the operators (I − Kz)−1 are uniformly bounded. As a special case some classical results relating to Wiener-Hopf operators are reproduced. A finite section version of the above equation (with the range of integration reduced to [−a, a]) is considered, as are projection and iterated projection methods for its solution. The operators (where denotes the finite section version of Kz) are shown uniformly bounded (in z and a) for all a sufficiently large. Uniform stability and convergence results, for the projection and iterated projection methods, are obtained. The argument generalizes an idea in collectively compact operator theory. Some new results in this theory are obtained and applied to the analysis of projection methods for the above equation when z is compactly supported and k(s − t) replaced by the general kernel k(s,t). A boundary integral equation of the above type, which models outdoor sound propagation over inhomogeneous level terrain, illustrates the application of the theoretical results developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of possible changes in the frequency and characteristics of European wind storms under future climate conditions was investigated on the basis of a multi-model ensemble of 9 coupled global climate model (GCM) simulations for the 20th and 21st centuries following the IPCC SRES A1B scenario. A multi-model approach allowed an estimation of the (un)certainties of the climate change signals. General changes in large-scale atmospheric flow were analysed, the occurrence of wind storms was quantified, and atmospheric features associated with wind storm events were considered. Identified storm days were investigated according to atmospheric circulation, associated pressure patterns, cyclone tracks and wind speed patterns. Validation against reanalysis data revealed that the GCMs are in general capable of realistically reproducing characteristics of European circulation weather types (CWTs) and wind storms. Results are given with respect to frequency of occurrence, storm-associated flow conditions, cyclone tracks and specific wind speed patterns. Under anthropogenic climate change conditions (SRES A1B scenario), increased frequency of westerly flow during winter is detected over the central European investigation area. In the ensemble mean, the number of detected wind storm days increases between 19 and 33% for 2 different measures of storminess, only 1 GCM revealed less storm days. The increased number of storm days detected in most models is disproportionately high compared to the related CWT changes. The mean intensity of cyclones associated with storm days in the ensemble mean increases by about 10 (±10)% in the Eastern Atlantic, near the British Isles and in the North Sea. Accordingly, wind speeds associated with storm events increase significantly by about 5 (±5)% over large parts of central Europe, mainly on days with westerly flow. The basic conclusions of this work remain valid if different ensemble contructions are considered, leaving out an outlier model or including multiple runs of one particular model.