925 resultados para Repression


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human transcription factor IIA (TFIIA) is composed of three subunits (alpha, beta, and gamma). TFIIA interacts with the TATA-box binding protein and can overcome repression of transcription. TFIIA was found to be necessary for VP16-mediated transcriptional activation through a coactivator function. We have separated the coactivator and antirepression activities of TFIIA. A TFIIA lacking the alpha subunit was isolated from HeLa cells. This "mini-TFIIA" interacts with the TATA-box binding protein and can overcome repression of transcription, but it is defective in transcriptional coactivator function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic code differences prevent expression of nuclear genes within Saccharomyces cerevisiae mitochondria. To bridge this gap a synthetic gene, ARG8m, designed to specify an arginine biosynthetic enzyme when expressed inside mitochondria, has been inserted into yeast mtDNA in place of the COX3 structural gene. This mitochondrial cox3::ARG8m gene fully complements a nuclear arg8 deletion at the level of cell growth, and it is dependent for expression upon nuclear genes that encode subunits of the COX3 mRNA-specific translational activator. Thus, cox3::ARG8m serves as a mitochondrial reporter gene. Measurement of cox3::ARG8m expression at the levels of steady-state protein and enzymatic activity reveals that glucose repression operates within mitochondria. The levels of this reporter vary among strains whose nuclear genotypes lead to under- and overexpression of translational activator subunits, in particular Pet494p, indicating that mRNA-specific translational activation is a rate-limiting step in this organellar system. Whereas the steady-state level of cox3::ARG8m mRNA was also glucose repressed in an otherwise wild-type strain, absence of translational activation led to essentially repressed mRNA levels even under derepressing growth conditions. Thus, the mRNA is stabilized by translational activation, and variation in its level may be largely due to modulation of translation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The posttranscriptional control of iron uptake, storage, and utilization by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) provides a molecular framework for the regulation of iron homeostasis in many animals. We have identified and characterized IREs in the mRNAs for two different mitochondrial citric acid cycle enzymes. Drosophila melanogaster IRP binds to an IRE in the 5' untranslated region of the mRNA encoding the iron-sulfur protein (Ip) subunit of succinate dehydrogenase (SDH). This interaction is developmentally regulated during Drosophila embryogenesis. In a cell-free translation system, recombinant IRP-1 imposes highly specific translational repression on a reporter mRNA bearing the SDH IRE, and the translation of SDH-Ip mRNA is iron regulated in D. melanogaster Schneider cells. In mammals, an IRE was identified in the 5' untranslated regions of mitochondrial aconitase mRNAs from two species. Recombinant IRP-1 represses aconitase synthesis with similar efficiency as ferritin IRE-controlled translation. The interaction between mammalian IRPs and the aconitase IRE is regulated by iron, nitric oxide, and oxidative stress (H2O2), indicating that these three signals can control the expression of mitochondrial aconitase mRNA. Our results identify a regulatory link between energy and iron metabolism in vertebrates and invertebrates, and suggest biological functions for the IRE/IRP regulatory system in addition to the maintenance of iron homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rev-erb alpha belongs to the nuclear receptor superfamily, which contains receptors for steroids, thyroid hormones, retinoic acid, and vitamin D, as well as "orphan" receptors. No ligand has been found for Rev-erb alpha to date, making it one of these orphan receptors. Similar to some other orphan receptors, Rev-erb alpha has been shown to bind DNA as a monomer on a specific sequence called a Rev-erb alpah responsive element (RevRE), but its transcriptional activity remains unclear. In this paper, we characterize a functional RevRE located in the human Rev-erb alpha promoter itself. We also present evidence that (i) Rev-erb alpha mediates transcriptional repression of its own promoter in vitro, (ii) this repressing effect strictly depends on the binding of Rev-erb alpha to its responsive element and is transferable to a heterologous promoter; and (iii) Rev-erb alpha binds to this responsive sequence as a homodimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptional repression is an important component of regulatory networks that govern gene expression. In this report, we have characterized the mechanisms by which the immediate early protein 2 (IE2 or IE86), a master transcriptional regulator of human cytomegalovirus, down-regulates its own expression. In vitro transcription and DNA binding experiments demonstrate that IE2 blocks specifically the association of RNA polymerase II with the preinitiation complex. Although, to our knowledge, this is the first report to describe a eukaryotic transcriptional repressor that selectively impedes RNA polymerase II recruitment, we present data that suggest that this type of repression might be widely used in the control of transcription by RNA polymerase II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anergy is a major mechanism to ensure antigen-specific tolerance in T lymphocytes in the adult. In vivo, anergy has mainly been studied at the cellular level. In this study, we used the T-cell-activating superantigen staphylococcal enterotoxin A (SEA) to investigate molecular mechanisms of T-lymphocyte anergy in vivo. Injection of SEA to adult mice activates CD4+ T cells expressing certain T-cell receptor (TCR) variable region beta-chain families and induces strong and rapid production of interleukin 2 (IL-2). In contrast, repeated injections of SEA cause CD4+ T-cell deletion and anergy in the remaining CD4+ T cells, characterized by reduced expression of IL-2 at mRNA and protein levels. We analyzed expression of AP-1, NF-kappa B, NF-AT, and octamer binding transcription factors, which are known to be involved in the regulation of IL-2 gene promoter activity. Large amounts of AP-1 and NF-kappa B and significant quantities of NF-AT were induced in SEA-activated CD4+ spleen T cells, whereas Oct-1 and Oct-2 DNA binding activity was similar in both resting and activated T cells. In contrast, anergic CD4+ T cells contained severely reduced levels of AP-1 and Fos/Jun-containing NF-AT complexes but expressed significant amounts of NF-kappa B and Oct binding proteins after SEA stimulation. Resolution of the NF-kappa B complex demonstrated predominant expression of p50-p65 heterodimers in activated CD4+ T cells, while anergic cells mainly expressed the transcriptionally inactive p50 homodimer. These alterations of transcription factors are likely to be responsible for repression of IL-2 in anergic T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Escherichia coli fnr gene product, FNR, is a DNA binding protein that regulates a large family of genes involved in cellular respiration and carbon metabolism during conditions of anaerobic cell growth. FNR is believed to contain a redox/O2-sensitive element for detecting the anaerobic state. To investigate this process, a fnr mutant that encodes an altered FNR protein with three amino acid substitutions in the N-terminal domain was constructed by site-directed mutagenesis. In vivo, the mutant behaved like a wild-type strain under anaerobic conditions but had a 14-fold elevated level of transcriptional activation of a reporter gene during aerobic cell growth. The altered fur gene was overexpressed in E. coli and the resultant FNR protein was purified to near homogeneity by using anaerobic chromatography procedures. An in vitro Rsa I restriction site protection assay was developed that allowed for the assessment of oxygen-dependent DNA binding of the mutant FNR protein. The FNR protein was purified as a monomer of M(r) 28,000 that contained nonheme iron at 2.05 +/- 0.34 mol of Fe per FNR monomer. In vitro DNase I protection studies were performed to establish the locations of the FNR-binding sites at the narG, narK, dmsA, and hemA promoters that are regulated by either activation or repression of their transcription. The sizes of the DNA footprints are consistent with the binding of two monomers of FNR that protect the symmetrical FNR-recognition sequence TTGAT-nnnnATCAA. Exposure of the FNR protein or protein-DNA complex to air for even short periods of time (approximately 5 min) led to the complete loss of DNA protection at a consensus FNR recognition site. A model whereby the FNR protein exists in the cell as a monomer that assembles on the DNA under anaerobic conditions to form a dimer is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translational control is a major form of regulating gene expression during gametogenesis and early development in many organisms. We sought to determine whether the translational repression of the protamine 1 (Prm1) mRNA is necessary for normal spermatid differentiation in mice. To accomplish this we generated transgenic animals that carry a Prm1 transgene lacking its normal 3' untranslated region. Premature translation of Prm1 mRNA caused precocious condensation of spermatid nuclear DNA, abnormal head morphogenesis, and incomplete processing of Prm2 protein. Premature accumulation of Prm1 within syncytial spermatids in mice hemizygous for the transgene caused dominant male sterility, which in some cases was accompanied by a complete arrest in spermatid differentiation. These results demonstrate that correct temporal synthesis of Prm1 is necessary for the transition from nucleohistones to nucleoprotamines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The UME6 gene of Saccharomyces cerevisiae was identified as a mitotic repressor of early meiosis-specific gene expression. It encodes a Zn2Cys6 DNA-binding protein which binds to URS1, a promoter element needed for both mitotic repression and meiotic induction of early meiotic genes. This paper demonstrates that a complete deletion of UME6 causes not only vegetative derepression of early meiotic genes during vegetative growth but also a significant reduction in induction of meiosis-specific genes, accompanied by a severe defect in meiotic progression. After initiating premeiotic DNA synthesis the vast majority of cells (approximately 85%) become arrested in prophase and fail to execute recombination; a minority of cells (approximately 15%) complete recombination and meiosis I, and half of these form asci. Quantitative analysis of the same early meiotic transcripts that are vegetatively derepressed in the ume6 mutant, SPO11, SPO13, IME2, and SPO1, indicates a low level of induction in meiosis above their vegetative derepressed levels. In addition, the expression of later meiotic transcripts, SPS2 and DIT1, is significantly delayed and reduced. The expression pattern of early meiotic genes in ume6-deleted cells is strikingly similar to that of early meiotic genes with promoter mutations in URS1. These results support the view that UME6 and URS1 are part of a developmental switch that controls both vegetative repression and meiotic induction of meiosis-specific genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although most nuclear hormone receptors are ligand-dependent transcriptional activators, certain members of this superfamily, such as thyroid hormone receptor (TR) and retinoic acid receptor (RAR), are involved in transcriptional repression. The silencing function of these receptors has been localized to the ligand binding domain (LBD). Previously, we demonstrated that overexpression of either the entire LBD or only the N-terminal region of the LBD (amino acids 168-259) is able to inhibit the silencing activity of TR. From this result we postulated the existence of a limiting factor (corepressor) that is necessary for TR silencing activity. To support this hypothesis, we identified amino acids in the N-terminal region of the LBD of TR that are important for the corepressor interaction and for the silencing function of TR. The silencing activity of TR was unaffected by overexpression of the LBD of mutant TR (V174A/D177A), suggesting that valine at position 174 and/or aspartic acid at position 177 are important for corepressor interaction. This mutant receptor protein, V174/D177, also lost the ability to silence target genes, suggesting that these amino acids are important for silencing function. Control experiments indicate that this mutant TR maintains its wild-type hormone binding and transactivation functions. These findings further strengthen the idea that the N-terminal region of the LBD of TR interacts with a putative corepressor protein(s) to achieve silencing of basal gene transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sin4 and Rgr1 proteins, previously shown by genetic studies to play both positive and negative roles in the transcriptional regulation of many genes, are identified here as components of mediator and RNA polymerase II holoenzyme complexes. Results with Sin4 deletion and Rgr1 truncation strains indicate the association of these proteins in a subcomplex comprising Sin4, Rgr1, Gal11, and a 50-kDa polypeptide. Taken together with the previous genetic evidence, our findings point to a role of the mediator in repression as well as in transcriptional activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germline loss-of-function mutations at the Wilms tumor (WT) suppressor locus WT1 are associated with a predisposition to WTs and mild genital system anomalies. In contrast, germ-line missense mutations within the WT1 gene encoding the DNA-binding domain often yield a more severe phenotype consisting of WT, sexual ambiguity, and renal nephropathy. In this report, we demonstrate that the products of mutant alleles that impair DNA recognition can antagonize WT1-mediated transcriptional repression. We demonstrate that WT1 can self-associate in vitro and in vivo and that the responsible domain maps to the amino-terminal region of the protein. Oligomers of full-length protein form less efficiently or produce less stable complexes than oligomers between truncated polypeptides and full-length protein. Our data suggest a molecular mechanism to explain how WT1 mutations may act in deregulating cellular proliferation and differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation is mediated by the transcription factor E2F, which binds to a specific site in the cyclin A promoter. It differs from the prototype E2F site in nucleotide sequence and protein binding; it is bound by E2F complexes containing cyclin E and p107 but not pRB. Ectopic expression of cyclin D1 triggers premature activation of the cyclin A promoter by E2F, and this effect is blocked by the tumor suppressor protein p16INK4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription of phospholipid biosynthetic genes in the yeast Saccharomyces cerevisiae is maximally derepressed when cells are grown in the absence of inositol and repressed when the cells are grown in its presence. We have previously suggested that this response to inositol may be dictated by regulating transcription of the cognate activator gene, INO2. However, it was also known that cells which harbor a mutant opi1 allele express constitutively derepressed levels of target genes (INO1 and CHO1), implicating the OPI1 negative regulatory gene in the response to inositol. These observations suggested that the response to inositol may involve both regulation of INO2 transcription as well as OPI1-mediated repression. We investigated these possibilities by examining the effect of inositol on target gene expression in a strain containing the INO2 gene under control of the GAL1 promoter. In this strain, transcription of the INO2 gene was regulated in response to galactose but was insensitive to inositol. The expression of the INO1 and CHO1 target genes was still responsive to inositol even though expression of the INO2 gene was unresponsive. However, the level of expression of the INO1 and CHO1 target genes correlated with the level of INO2 transcription. Furthermore, the effect of inositol on target gene expression was eliminated by deleting the OPI1 gene in the GAL1-INO2-containing strain. These data suggest that the OPI1 gene product is the primary target (sensor) of the inositol response and that derepression of INO2 transcription determines the degree of expression of the target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism under which the signal-reception amino-terminal portion (A domain) of the prokaryotic enhancer-binding protein XylR controls the activity of the regulator has been investigated through complementation tests in vivo, in which the various protein segments were produced as independent polypeptides. Separate expression of the A domain repressed the otherwise constitutive activity of a truncated derivative of XylR deleted of its A domain (XylR delta A). Such inhibition was not released by m-xylene, the natural inducer of the system. Repression caused by the A domain was specific for XylR because it did not affect activation of the sigma 54 promoter PnifH by a derivative of its cognate regulator, NifA, deleted of its own A domain. The A domain was also unable to repress the activity of a NifA-XylR hybrid protein resulting from fusing two-thirds of the central domain of NifA to the carboxyl-terminal third of XylR, which includes its DNA-binding domain. The inhibitory effect caused by the A domain of XylR on XylR delta A seems, therefore, to result from specific interactions in trans between the two truncated proteins and not from mere hindering of an activating surface.