969 resultados para Remote-sensing Data
Resumo:
In this study we propose an evaluation of the angular effects altering the spectral response of the land-cover over multi-angle remote sensing image acquisitions. The shift in the statistical distribution of the pixels observed in an in-track sequence of WorldView-2 images is analyzed by means of a kernel-based measure of distance between probability distributions. Afterwards, the portability of supervised classifiers across the sequence is investigated by looking at the evolution of the classification accuracy with respect to the changing observation angle. In this context, the efficiency of various physically and statistically based preprocessing methods in obtaining angle-invariant data spaces is compared and possible synergies are discussed.
Resumo:
Orbital remote sensing in the microwave electromagnetic region has been presented as an important tool for agriculture monitoring. The satellite systems in operation have almost all-weather capability and high spatial resolution, which are features appropriated for agriculture. However, for full exploration of these data, an understanding of the relationships between the characteristics of each system and agricultural targets is necessary. This paper describes the behavior of backscattering coefficient (sigma°) derived from calibrated data of Radarsat images from an agricultural area. It is shown that in a dispersion diagram of sigma° there are three main regions in which most of the fields can be classified. The first one is characterized by low backscattering values, with pastures and bare soils; the second one has intermediate backscattering coefficients and comprises well grown crops mainly; and a third one, with high backscattering coefficients, in which there are fields with strong structures causing a kind of double bounce effect. The results of this research indicate that the use of Radarsat images is optimized when a multitemporal analysis is done making the best use of the agricultural calendar and of the dynamics of different cultures.
Resumo:
The objective of this work was to verify if reflected energy of soils can characterize and discriminate them. A spectroradiometer (Spectral reflectance between: 400-2,500 nm) was utilized in laboratory. The soils evaluated are located in Bauru region, SP, Brazil, and are classified as Typic Argiudoll (TR), Typic Eutrorthox (LR), Typic Argiudoll (PE), Typic Haplortox (LE), Typic Paleudalf (PV) and Typic Quartzipsamment (AQ). They were characterized by their spectral reflectance as for descriptive conventional methods (Brazilian and International) according to the types of spectral curves. A method for the spectral descriptive evaluation of soils was established. It was possible to characterize and discriminate the soils by their spectral reflectance, with exception for LR and TR. The spectral differences were better identified by the general shape of spectral curves, by the intensity of band absorption and angle tendencies. These characteristics were mainly influenced by organic matter, iron, granulometry and mineralogy constituents. A reduction of iron and clay contents, which influenced higher reflectance intensity and shape variations, occurred on the soils LR/TR, PE, LE, PV and AQ, on that sequence. Soils of the same group with different clay textures could be discriminated. The conventional descriptive evaluation of spectral curves was less efficient on discriminating soils. Simulated orbital data discriminated soils mainly by bands 5 and 7.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
We investigate the relevance of morphological operators for the classification of land use in urban scenes using submetric panchromatic imagery. A support vector machine is used for the classification. Six types of filters have been employed: opening and closing, opening and closing by reconstruction, and opening and closing top hat. The type and scale of the filters are discussed, and a feature selection algorithm called recursive feature elimination is applied to decrease the dimensionality of the input data. The analysis performed on two QuickBird panchromatic images showed that simple opening and closing operators are the most relevant for classification at such a high spatial resolution. Moreover, mixed sets combining simple and reconstruction filters provided the best performance. Tests performed on both images, having areas characterized by different architectural styles, yielded similar results for both feature selection and classification accuracy, suggesting the generalization of the feature sets highlighted.
Resumo:
The objective of this work was to evaluate the application of the spectral-temporal response surface (STRS) classification method on Moderate Resolution Imaging Spectroradiometer (MODIS, 250 m) sensor images in order to estimate soybean areas in Mato Grosso state, Brazil. The classification was carried out using the maximum likelihood algorithm (MLA) adapted to the STRS method. Thirty segments of 30x30 km were chosen along the main agricultural regions of Mato Grosso state, using data from the summer season of 2005/2006 (from October to March), and were mapped based on fieldwork data, TM/Landsat-5 and CCD/CBERS-2 images. Five thematic classes were considered: Soybean, Forest, Cerrado, Pasture and Bare Soil. The classification by the STRS method was done over an area intersected with a subset of 30x30-km segments. In regions with soybean predominance, STRS classification overestimated in 21.31% of the reference values. In regions where soybean fields were less prevalent, the classifier overestimated 132.37% in the acreage of the reference. The overall classification accuracy was 80%. MODIS sensor images and the STRS algorithm showed to be promising for the classification of soybean areas in regions with the predominance of large farms. However, the results for fragmented areas and smaller farms were less efficient, overestimating soybean areas.
Resumo:
Les catastrophes sont souvent perçues comme des événements rapides et aléatoires. Si les déclencheurs peuvent être soudains, les catastrophes, elles, sont le résultat d'une accumulation des conséquences d'actions et de décisions inappropriées ainsi que du changement global. Pour modifier cette perception du risque, des outils de sensibilisation sont nécessaires. Des méthodes quantitatives ont été développées et ont permis d'identifier la distribution et les facteurs sous- jacents du risque.¦Le risque de catastrophes résulte de l'intersection entre aléas, exposition et vulnérabilité. La fréquence et l'intensité des aléas peuvent être influencées par le changement climatique ou le déclin des écosystèmes, la croissance démographique augmente l'exposition, alors que l'évolution du niveau de développement affecte la vulnérabilité. Chacune de ses composantes pouvant changer, le risque est dynamique et doit être réévalué périodiquement par les gouvernements, les assurances ou les agences de développement. Au niveau global, ces analyses sont souvent effectuées à l'aide de base de données sur les pertes enregistrées. Nos résultats montrent que celles-ci sont susceptibles d'être biaisées notamment par l'amélioration de l'accès à l'information. Elles ne sont pas exhaustives et ne donnent pas d'information sur l'exposition, l'intensité ou la vulnérabilité. Une nouvelle approche, indépendante des pertes reportées, est donc nécessaire.¦Les recherches présentées ici ont été mandatées par les Nations Unies et par des agences oeuvrant dans le développement et l'environnement (PNUD, l'UNISDR, la GTZ, le PNUE ou l'UICN). Ces organismes avaient besoin d'une évaluation quantitative sur les facteurs sous-jacents du risque, afin de sensibiliser les décideurs et pour la priorisation des projets de réduction des risques de désastres.¦La méthode est basée sur les systèmes d'information géographique, la télédétection, les bases de données et l'analyse statistique. Une importante quantité de données (1,7 Tb) et plusieurs milliers d'heures de calculs ont été nécessaires. Un modèle de risque global a été élaboré pour révéler la distribution des aléas, de l'exposition et des risques, ainsi que pour l'identification des facteurs de risque sous- jacent de plusieurs aléas (inondations, cyclones tropicaux, séismes et glissements de terrain). Deux indexes de risque multiples ont été générés pour comparer les pays. Les résultats incluent une évaluation du rôle de l'intensité de l'aléa, de l'exposition, de la pauvreté, de la gouvernance dans la configuration et les tendances du risque. Il apparaît que les facteurs de vulnérabilité changent en fonction du type d'aléa, et contrairement à l'exposition, leur poids décroît quand l'intensité augmente.¦Au niveau local, la méthode a été testée pour mettre en évidence l'influence du changement climatique et du déclin des écosystèmes sur l'aléa. Dans le nord du Pakistan, la déforestation induit une augmentation de la susceptibilité des glissements de terrain. Les recherches menées au Pérou (à base d'imagerie satellitaire et de collecte de données au sol) révèlent un retrait glaciaire rapide et donnent une évaluation du volume de glace restante ainsi que des scénarios sur l'évolution possible.¦Ces résultats ont été présentés à des publics différents, notamment en face de 160 gouvernements. Les résultats et les données générées sont accessibles en ligne (http://preview.grid.unep.ch). La méthode est flexible et facilement transposable à des échelles et problématiques différentes, offrant de bonnes perspectives pour l'adaptation à d'autres domaines de recherche.¦La caractérisation du risque au niveau global et l'identification du rôle des écosystèmes dans le risque de catastrophe est en plein développement. Ces recherches ont révélés de nombreux défis, certains ont été résolus, d'autres sont restés des limitations. Cependant, il apparaît clairement que le niveau de développement configure line grande partie des risques de catastrophes. La dynamique du risque est gouvernée principalement par le changement global.¦Disasters are often perceived as fast and random events. If the triggers may be sudden, disasters are the result of an accumulation of actions, consequences from inappropriate decisions and from global change. To modify this perception of risk, advocacy tools are needed. Quantitative methods have been developed to identify the distribution and the underlying factors of risk.¦Disaster risk is resulting from the intersection of hazards, exposure and vulnerability. The frequency and intensity of hazards can be influenced by climate change or by the decline of ecosystems. Population growth increases the exposure, while changes in the level of development affect the vulnerability. Given that each of its components may change, the risk is dynamic and should be reviewed periodically by governments, insurance companies or development agencies. At the global level, these analyses are often performed using databases on reported losses. Our results show that these are likely to be biased in particular by improvements in access to information. International losses databases are not exhaustive and do not give information on exposure, the intensity or vulnerability. A new approach, independent of reported losses, is necessary.¦The researches presented here have been mandated by the United Nations and agencies working in the development and the environment (UNDP, UNISDR, GTZ, UNEP and IUCN). These organizations needed a quantitative assessment of the underlying factors of risk, to raise awareness amongst policymakers and to prioritize disaster risk reduction projects.¦The method is based on geographic information systems, remote sensing, databases and statistical analysis. It required a large amount of data (1.7 Tb of data on both the physical environment and socio-economic parameters) and several thousand hours of processing were necessary. A comprehensive risk model was developed to reveal the distribution of hazards, exposure and risk, and to identify underlying risk factors. These were performed for several hazards (e.g. floods, tropical cyclones, earthquakes and landslides). Two different multiple risk indexes were generated to compare countries. The results include an evaluation of the role of the intensity of the hazard, exposure, poverty, governance in the pattern and trends of risk. It appears that the vulnerability factors change depending on the type of hazard, and contrary to the exposure, their weight decreases as the intensity increases.¦Locally, the method was tested to highlight the influence of climate change and the ecosystems decline on the hazard. In northern Pakistan, deforestation exacerbates the susceptibility of landslides. Researches in Peru (based on satellite imagery and ground data collection) revealed a rapid glacier retreat and give an assessment of the remaining ice volume as well as scenarios of possible evolution.¦These results were presented to different audiences, including in front of 160 governments. The results and data generated are made available online through an open source SDI (http://preview.grid.unep.ch). The method is flexible and easily transferable to different scales and issues, with good prospects for adaptation to other research areas. The risk characterization at a global level and identifying the role of ecosystems in disaster risk is booming. These researches have revealed many challenges, some were resolved, while others remained limitations. However, it is clear that the level of development, and more over, unsustainable development, configures a large part of disaster risk and that the dynamics of risk is primarily governed by global change.
Resumo:
Cognitive radio networks (CRN) sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. The detection capability of a radio system can be enhanced if the sensing process is performed jointly by a group of nodes so that the effects of wireless fading and shadowing can be minimized. However, taking a collaborative approach poses new security threats to the system as nodes can report false sensing data to force a wrong decision. Providing security to the sensing process is also complex, as it usually involves introducing limitations to the CRN applications. The most common limitation is the need for a static trusted node that is able to authenticate and merge the reports of all CRN nodes. This paper overcomes this limitation by presenting a protocol that is suitable for fully distributed scenarios, where there is no static trusted node.
Resumo:
In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.
Resumo:
This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53° incidence angle and with JPL's WINDRAD measurements at incidence angles from 30° to 65°, and at wind speeds from 2.5 to 11 m/s.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
In 1903, more than 30 million m3 of rock fell from the east slopes of Turtle Mountain in Alberta, Canada, causing a rock avalanche that killed about 70 people in the town of Frank. The Alberta Government, in response to continuing instabilities at the crest of the mountain, established a sophisticated field laboratory where state-of-the-art monitoring techniques have been installed and tested as part of an early-warning system. In this chapter, we provide an overview of the causes, trigger, and extreme mobility of the landslide. We then present new data relevant to the characterization and detection of the present-day instabilities on Turtle Mountain. Fourteen potential instabilities have been identified through field mapping and remote sensing. Lastly, we provide a detailed review of the different in-situ and remote monitoring systems that have been installed on the mountain. The implications of the new data for the future stability of Turtle Mountain and related landslide runout, and for monitoring strategies and risk management, are discussed.
Resumo:
This study shows how a new generation of terrestrial laser scanners can be used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The study area is an Alpine valley glacier, Haut Glacier d'Arolla, Switzerland. Here we use an ultra-long-range lidar RIEGL VZ-6000 scanner, having a laser specifically designed for measurement of snow- and ice-cover surfaces. We focus on two timescales: seasonal and daily. Our results show that a near-infrared scanning laser system can provide high-precision elevation change and ablation data from long ranges, and over relatively large sections of the glacier surface. We use it to quantify spatial variations in the patterns of surface melt at the seasonal scale, as controlled by both aspect and differential debris cover. At the daily scale, we quantify the effects of ogive-related differences in ice surface debris content on spatial patterns of ablation. Daily scale measurements point to possible hydraulic jacking of the glacier associated with short-term water pressure rises. This latter demonstration shows that this type of lidar may be used to address subglacial hydrologic questions, in addition to motion and ablation measurements.
Resumo:
The management and conservation of coastal waters in the Baltic is challenged by a number of complex environmental problems, including eutrophication and habitat degradation. Demands for a more holistic, integrated and adaptive framework of ecosystem-based management emphasize the importance of appropriate information on the status and changes of the aquatic ecosystems. The thesis focuses on the spatiotemporal aspects of environmental monitoring in the extensive and geomorphologically complex coastal region of SW Finland, where the acquisition of spatially and temporally representative monitoring data is inherently challenging. Furthermore, the region is subject to multiple human interests and uses. A holistic geographical approach is emphasized, as it is ultimately the physical conditions that set the frame for any human activity. Characteristics of the coastal environment were examined using water quality data from the database of the Finnish environmental administration and Landsat TM/ETM+ images. A basic feature of the complex aquatic environment in the Archipelago Sea is its high spatial and temporal variability; this foregrounds the importance of geographical information as a basis of environmental assessments. While evidence of a consistent water turbidity pattern was observed, the coastal hydrodynamic realm is also characterized by high spatial and temporal variability. It is therefore also crucial to consider the spatial and temporal representativeness of field monitoring data. Remote sensing may facilitate evaluation of hydrodynamic conditions in the coastal region and the spatial extrapolation of in situ data despite their restrictions. Additionally, remotely sensed images can be used in the mapping of many of those coastal habitats that need to be considered in environmental management. With regard to surface water monitoring, only a small fraction of the currently available data stored in the Hertta-PIVET register can be used effectively in scientific studies and environmental assessments. Long-term consistent data collection from established sampling stations should be emphasized but research-type seasonal assessments producing abundant data should also be encouraged. Thus a more comprehensive coordination of field work efforts is called for. The integration of remote sensing and various field measurement techniques would be especially useful in the complex coastal waters. The integration and development of monitoring system in Finnish coastal areas also requires further scientific assesement of monitoring practices. A holistic approach to the gathering and management of environmental monitoring data could be a cost-effective way of serving a multitude of information needs, and would fit the holistic, ecosystem-based management regimes that are currently being strongly promoted in Europe.
Resumo:
This book is one out of 8 IAEG XII Congress volumes, and deals with Landslide processes, including: field data and monitoring techniques, prediction and forecasting of landslide occurrence, regional landslide inventories and dating studies, modeling of slope instabilities and secondary hazards (e.g. impulse waves and landslide-induced tsunamis, landslide dam failures and breaching), hazard and risk assessment, earthquake and rainfall induced landslides, instabilities of volcanic edifices, remedial works and mitigation measures, development of innovative stabilization techniques and applicability to specific engineering geological conditions, use of geophysical techniques for landslide characterization and investigation of triggering mechanisms. Focuses is given to innovative techniques, well documented case studies in different environments, critical components of engineering geological and geotechnical investigations, hydrological and hydrogeological investigations, remote sensing and geophysical techniques, modeling of triggering, collapse, runout and landslide reactivation, geotechnical design and construction procedures in landslide zones, interaction of landslides with structures and infrastructures and possibility of domino effects. The Engineering Geology for Society and Territory volumes of the IAEG XII Congress held in Torino from September 15-19, 2014, analyze the dynamic role of engineering geology in our changing world and build on the four main themes of the congress: environment, processes, issues, and approaches.