955 resultados para Rayleigh-Ritz theorem
Resumo:
The propagation behaviors, which include the carrier-envelope phase, the area evolution and the solitary pulse number of few-cycle pulses in a dense two-level medium, are investigated based on full-wave Maxwell-Bloch equations by taking Lorentz local field correction (LFC) into account. Several novel features are found: the difference of the carrier-envelope phase between the cases with and without LFC can go up to pi at some location; although the area of ultrashort solitary pulses is lager than 2 pi, the area of the effective Rabi frequency, which equals to that the Rabi frequency pluses the product of the strength of the near dipole-dipole (NDD) interaction and the polarization, is consistent with the standard area theorem and keeps 2 pi; the large area pulse penetrating into the medium produces several solitary pulses as usual, but the number of solitary pulses changes at certain condition. (C) 2005 Optical Society of America.
Resumo:
In this thesis we study Galois representations corresponding to abelian varieties with certain reduction conditions. We show that these conditions force the image of the representations to be "big," so that the Mumford-Tate conjecture (:= MT) holds. We also prove that the set of abelian varieties satisfying these conditions is dense in a corresponding moduli space.
The main results of the thesis are the following two theorems.
Theorem A: Let A be an absolutely simple abelian variety, End° (A) = k : imaginary quadratic field, g = dim(A). Assume either dim(A) ≤ 4, or A has bad reduction at some prime ϕ, with the dimension of the toric part of the reduction equal to 2r, and gcd(r,g) = 1, and (r,g) ≠ (15,56) or (m -1, m(m+1)/2). Then MT holds.
Theorem B: Let M be the moduli space of abelian varieties with fixed polarization, level structure and a k-action. It is defined over a number field F. The subset of M(Q) corresponding to absolutely simple abelian varieties with a prescribed stable reduction at a large enough prime ϕ of F is dense in M(C) in the complex topology. In particular, the set of simple abelian varieties having bad reductions with fixed dimension of the toric parts is dense.
Besides this we also established the following results:
(1) MT holds for some other classes of abelian varieties with similar reduction conditions. For example, if A is an abelian variety with End° (A) = Q and the dimension of the toric part of its reduction is prime to dim( A), then MT holds.
(2) MT holds for Ribet-type abelian varieties.
(3) The Hodge and the Tate conjectures are equivalent for abelian 4-folds.
(4) MT holds for abelian 4-folds of type II, III, IV (Theorem 5.0(2)) and some 4-folds of type I.
(5) For some abelian varieties either MT or the Hodge conjecture holds.
Resumo:
Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠ xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.
The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.
Resumo:
Within the framework of second-order Rayleigh-Schrodinger perturbation theory, the polaronic correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Frohlich's Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations show that the first excited polaronic effect can be considerable in small quantum dots.
Resumo:
Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Two of the most important questions in mantle dynamics are investigated in three separate studies: the influence of phase transitions (studies 1 and 2), and the influence of temperature-dependent viscosity (study 3).
(1) Numerical modeling of mantle convection in a three-dimensional spherical shell incorporating the two major mantle phase transitions reveals an inherently three-dimensional flow pattern characterized by accumulation of cold downwellings above the 670 km discontinuity, and cylindrical 'avalanches' of upper mantle material into the lower mantle. The exothermic phase transition at 400 km depth reduces the degree of layering. A region of strongly-depressed temperature occurs at the base of the mantle. The temperature field is strongly modulated by this partial layering, both locally and in globally-averaged diagnostics. Flow penetration is strongly wavelength-dependent, with easy penetration at long wavelengths but strong inhibition at short wavelengths. The amplitude of the geoid is not significantly affected.
(2) Using a simple criterion for the deflection of an upwelling or downwelling by an endothermic phase transition, the scaling of the critical phase buoyancy parameter with the important lengthscales is obtained. The derived trends match those observed in numerical simulations, i.e., deflection is enhanced by (a) shorter wavelengths, (b) narrower up/downwellings (c) internal heating and (d) narrower phase loops.
(3) A systematic investigation into the effects of temperature-dependent viscosity on mantle convection has been performed in three-dimensional Cartesian geometry, with a factor of 1000-2500 viscosity variation, and Rayleigh numbers of 10^5-10^7. Enormous differences in model behavior are found, depending on the details of rheology, heating mode, compressibility and boundary conditions. Stress-free boundaries, compressibility, and temperature-dependent viscosity all favor long-wavelength flows, even in internally heated cases. However, small cells are obtained with some parameter combinations. Downwelling plumes and upwelling sheets are possible when viscosity is dependent solely on temperature. Viscous dissipation becomes important with temperature-dependent viscosity.
The sensitivity of mantle flow and structure to these various complexities illustrates the importance of performing mantle convection calculations with rheological and thermodynamic properties matching as closely as possible those of the Earth.
Resumo:
We present a novel account of the theory of commutative spectral triples and their two closest noncommutative generalisations, almost-commutative spectral triples and toric noncommutative manifolds, with a focus on reconstruction theorems, viz, abstract, functional-analytic characterisations of global-analytically defined classes of spectral triples. We begin by reinterpreting Connes's reconstruction theorem for commutative spectral triples as a complete noncommutative-geometric characterisation of Dirac-type operators on compact oriented Riemannian manifolds, and in the process clarify folklore concerning stability of properties of spectral triples under suitable perturbation of the Dirac operator. Next, we apply this reinterpretation of the commutative reconstruction theorem to obtain a reconstruction theorem for almost-commutative spectral triples. In particular, we propose a revised, manifestly global-analytic definition of almost-commutative spectral triple, and, as an application of this global-analytic perspective, obtain a general result relating the spectral action on the total space of a finite normal compact oriented Riemannian cover to that on the base space. Throughout, we discuss the relevant refinements of these definitions and results to the case of real commutative and almost-commutative spectral triples. Finally, we outline progess towards a reconstruction theorem for toric noncommutative manifolds.
Resumo:
Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.
In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.
The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.
In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.
The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.
Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.
Resumo:
The aim of this paper is to investigate to what extent the known theory of subdifferentiability and generic differentiability of convex functions defined on open sets can be carried out in the context of convex functions defined on not necessarily open sets. Among the main results obtained I would like to mention a Kenderov type theorem (the subdifferential at a generic point is contained in a sphere), a generic Gâteaux differentiability result in Banach spaces of class S and a generic Fréchet differentiability result in Asplund spaces. At least two methods can be used to prove these results: first, a direct one, and second, a more general one, based on the theory of monotone operators. Since this last theory was previously developed essentially for monotone operators defined on open sets, it was necessary to extend it to the context of monotone operators defined on a larger class of sets, our "quasi open" sets. This is done in Chapter III. As a matter of fact, most of these results have an even more general nature and have roots in the theory of minimal usco maps, as shown in Chapter II.
Resumo:
We investigate the nonlinear propagation of ultrashort pulses on resonant intersubband transitions in multiple semiconductor quantum wells. It is shown that the nonlinearity rooted from electron-electron interactions destroys the condition giving rise to self-induced transparency. However, by adjusting the area of input pulse, we find the signatures of self-induced transmission due to a full Rabi flopping of the electron density, and this phenomenon can be approximately interpreted by the traditional standard area theorem via defining the effective area of input pulse.
Resumo:
With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected. For intensities around 10(19) W(.)mu m(2)/cm(2), an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 10(21) W(.)mu m(2)/cm(2). The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.
Resumo:
In this work, the development of a probabilistic approach to robust control is motivated by structural control applications in civil engineering. Often in civil structural applications, a system's performance is specified in terms of its reliability. In addition, the model and input uncertainty for the system may be described most appropriately using probabilistic or "soft" bounds on the model and input sets. The probabilistic robust control methodology contrasts with existing H∞/μ robust control methodologies that do not use probability information for the model and input uncertainty sets, yielding only the guaranteed (i.e., "worst-case") system performance, and no information about the system's probable performance which would be of interest to civil engineers.
The design objective for the probabilistic robust controller is to maximize the reliability of the uncertain structure/controller system for a probabilistically-described uncertain excitation. The robust performance is computed for a set of possible models by weighting the conditional performance probability for a particular model by the probability of that model, then integrating over the set of possible models. This integration is accomplished efficiently using an asymptotic approximation. The probable performance can be optimized numerically over the class of allowable controllers to find the optimal controller. Also, if structural response data becomes available from a controlled structure, its probable performance can easily be updated using Bayes's Theorem to update the probability distribution over the set of possible models. An updated optimal controller can then be produced, if desired, by following the original procedure. Thus, the probabilistic framework integrates system identification and robust control in a natural manner.
The probabilistic robust control methodology is applied to two systems in this thesis. The first is a high-fidelity computer model of a benchmark structural control laboratory experiment. For this application, uncertainty in the input model only is considered. The probabilistic control design minimizes the failure probability of the benchmark system while remaining robust with respect to the input model uncertainty. The performance of an optimal low-order controller compares favorably with higher-order controllers for the same benchmark system which are based on other approaches. The second application is to the Caltech Flexible Structure, which is a light-weight aluminum truss structure actuated by three voice coil actuators. A controller is designed to minimize the failure probability for a nominal model of this system. Furthermore, the method for updating the model-based performance calculation given new response data from the system is illustrated.
Resumo:
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
Resumo:
Chapter I
Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.
Chapter II
A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.
EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.
EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.
Chapter III
A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.
Resumo:
Time-of-flight measurements of energetic He atoms, field ionization of cryogenic liquid helium clusters, and time-of-flight and REMPI spectroscopy of radical salt clusters were investigated experimentally. The excited He atoms were generated in a corona discharge. Two strong neutral peaks were observed, accompanied by a prompt photon peak and a charged peak. All peaks were correlated with the pulsing of the discharge. The neutral hyperthermal and metastable atoms were formed by different mechanisms at different stages of the corona discharge. Positively charged helium droplets were produced by ionization of liquid helium in an electrostatic spraying experiment. The fluid emerging from a thin glass capillary was ionized by a high voltage applied to a needle inside the capillary. Fine droplets (less than 10 µm in diameter) were produced in showers with currents as high as 0.4 µA at 2-4 kV. The high currents resulting from field ionization in helium and the low surface tension of He I, led to charge densities that greatly exceeded the Rayleigh limit, thus resulting in coulombic explosion of the liquid. In contrast, liquid nitrogen formed a well-defined Taylor cone with droplets having diameters comparable to the jet (≈100 µm) at lower currents (10 nA) and higher voltages (8 kV). The metal-halide clusters of calcium and chlorine were generated by laser ablation of calcium metal in a Ar/CCl4 expansion. A visible spectrum of the Ca2Cl3 cluster was observed from 651 to 630 nm by 1 +1' REMPI. The spectra were composed of a strong origin band at 15 350.8 cm-1 and several weak vibronic bands. Density functional calculations predicted three minimum energy isomers. The spectrum was assigned to the 2B2 ← X 2A1 transition of a planar C2V structure having a ring of two Cl and two Ca atoms and a terminal Cl atom. The ring isomer of Ca2Cl3 has the unpaired electron localized on one Ca2+ ion to form a Ca+ chromophore. A second electronic band of Ca2Cl3 was observed at 720 nm. The band is sharply different from the 650 nm band and likely due to a different isomer.