925 resultados para Rate-based flow control
Resumo:
ABSTRACT Microsprinkler non-pressure compensating nozzles usually show water flow variation along the lateral line. This study aimed at adapting microtubes into non-compensating system of microsprinklers previous installed in the field, as a self-compensated nozzle, to improve the flow uniformity along the lateral line. Microtubes were adapted to three types of commercial microsprinklers. Tests were conducted, both in the laboratory and in field, to evaluate the microsprinkler performance at four different flows (40, 50, 60 and 70 L h-1) under pressure head range from 75 to 245 kPa. Nozzles presented coefficient of flow-rate variation (CVq) lower than 5.5% and distribution uniformity (DU) greater than 95%, which are classified as excellent. The original spatial water distribution of the microsprinkler did not change by using microtube as a nozzle. This device adapted to non-pressure compensating microsprinklers are functional and operate effectively with flows ranging up to 70 L h-1. Small variations at microsprinkler flows along the lateral line can occur, however, at random manner, which is common for pressure-compensating nozzles. Therefore, the microtube technique is able to control pressure variation in microsprinklers.
Resumo:
Glass is a unique material with a long history. Several glass products are used daily in our everyday life, often unnoticed. Glass can be found not only in obvious applications such as tableware, windows, and light bulbs, but also in tennis rackets, windmill turbine blades, optical devices, and medical implants. The glasses used at present as implants are inorganic silica-based melt-derived compositions mainly for hard-tissue repair as bone graft substitute in dentistry and orthopedics. The degree of glass reactivity desired varies according to implantation situation and it is vital that the ion release from any glasses used in medical applications is controlled. Understanding the in vitro dissolution rate of glasses provides a first approximation of their behavior in vivo. Specific studies concerning dissolution properties of bioactive glasses have been relatively scarce and mostly concentrated to static condition studies. The motivation behind this work was to develop a simple and accurate method for quantifying the in vitro dissolution rate of highly different types of glass compositions with interest for future clinical applications. By combining information from various experimental conditions, a better knowledge of glass dissolution and the suitability of different glasses for different medical applications can be obtained. Thus, two traditional and one novel approach were utilized in this thesis to study glass dissolution. The chemical durability of silicate glasses was tested in water and TRIS-buffered solution at static and dynamic conditions. The traditional in vitro testing with a TRISbuffered solution under static conditions works well with bioactive or with readily dissolving glasses, and it is easy to follow the ion dissolution reactions. However, in the buffered solution no marked differences between the more durable glasses were observed. The hydrolytic resistance of the glasses was studied using the standard procedure ISO 719. The relative scale given by the standard failed to provide any relevant information when bioactive glasses were studied. However, the clear differences in the hydrolytic resistance values imply that the method could be used as a rapid test to get an overall idea of the biodegradability of glasses. The standard method combined with the ion concentration and pH measurements gives a better estimate of the hydrolytic resistance because of the high silicon amount released from a glass. A sensitive on-line analysis method utilizing inductively coupled plasma optical emission spectrometer and a flow-through micro-volume pH electrode was developed to study the initial dissolution of biocompatible glasses. This approach was found suitable for compositions within a large range of chemical durability. With this approach, the initial dissolution of all ions could be measured simultaneously and quantitatively, which gave a good overall idea of the initial dissolution rates for the individual ions and the dissolution mechanism. These types of results with glass dissolution were presented for the first time during the course of writing this thesis. Based on the initial dissolution patterns obtained with the novel approach using TRIS, the experimental glasses could be divided into four distinct categories. The initial dissolution patterns of glasses correlated well with the anticipated bioactivity. Moreover, the normalized surface-specific mass loss rates and the different in vivo models and the actual in vivo data correlated well. The results suggest that this type of approach can be used for prescreening the suitability of novel glass compositions for future clinical applications. Furthermore, the results shed light on the possible bioactivity of glasses. An additional goal in this thesis was to gain insight into the phase changes occurring during various heat treatments of glasses with three selected compositions. Engineering-type T-T-T curves for glasses 1-98 and 13-93 were stablished. The information gained is essential in manufacturing amorphous porous implants or for drawing of continuous fibers of the glasses. Although both glasses can be hot worked to amorphous products at carefully controlled conditions, 1-98 showed one magnitude greater nucleation and crystal growth rate than 13-93. Thus, 13-93 is better suited than 1-98 for working processes which require long residence times at high temperatures. It was also shown that amorphous and partially crystalline porous implants can be sintered from bioactive glass S53P4. Surface crystallization of S53P4, forming Na2O∙CaO∙2SiO2, was observed to start at 650°C. The secondary crystals of Na2Ca4(PO4)2SiO4, reported for the first time in this thesis, were detected at higher temperatures, from 850°C to 1000°C. The crystal phases formed affected the dissolution behavior of the implants in simulated body fluid. This study opens up new possibilities for using S53P4 to manufacture various structures, while tailoring their bioactivity by controlling the proportions of the different phases. The results obtained in this thesis give valuable additional information and tools to the state of the art for designing glasses with respect to future clinical applications. With the knowledge gained we can identify different dissolution patters and use this information to improve the tuning of glass compositions. In addition, the novel online analysis approach provides an excellent opportunity to further enhance our knowledge of glass behavior in simulated body conditions.
Resumo:
Formal methods provide a means of reasoning about computer programs in order to prove correctness criteria. One subtype of formal methods is based on the weakest precondition predicate transformer semantics and uses guarded commands as the basic modelling construct. Examples of such formalisms are Action Systems and Event-B. Guarded commands can intuitively be understood as actions that may be triggered when an associated guard condition holds. Guarded commands whose guards hold are nondeterministically chosen for execution, but no further control flow is present by default. Such a modelling approach is convenient for proving correctness, and the Refinement Calculus allows for a stepwise development method. It also has a parallel interpretation facilitating development of concurrent software, and it is suitable for describing event-driven scenarios. However, for many application areas, the execution paradigm traditionally used comprises more explicit control flow, which constitutes an obstacle for using the above mentioned formal methods. In this thesis, we study how guarded command based modelling approaches can be conveniently and efficiently scheduled in different scenarios. We first focus on the modelling of trust for transactions in a social networking setting. Due to the event-based nature of the scenario, the use of guarded commands turns out to be relatively straightforward. We continue by studying modelling of concurrent software, with particular focus on compute-intensive scenarios. We go from theoretical considerations to the feasibility of implementation by evaluating the performance and scalability of executing a case study model in parallel using automatic scheduling performed by a dedicated scheduler. Finally, we propose a more explicit and non-centralised approach in which the flow of each task is controlled by a schedule of its own. The schedules are expressed in a dedicated scheduling language, and patterns assist the developer in proving correctness of the scheduled model with respect to the original one.
Resumo:
This three-phase study was conducted to examine the effect of the Breast Cancer Patient’s Pathway program (BCPP) on breast cancer patients’ empowering process from the viewpoint of the difference between knowledge expectations and perceptions of received knowledge, knowledge level, quality of life, anxiety and treatment-related side effects during the breast cancer treatment process. The BCPP is an Internet-based patient education tool describing a flow chart of the patient pathway during the breast treatment process, from breast cancer diagnostic tests to the follow-up after treatments. The ultimate goal of this study was to evaluate the effect of the BCPP to the breast cancer patient’s empowerment by using the patient pathway as a patient education tool. In phase I, a systematic literature review was carried out to chart the solutions and outcomes of Internet-based educational programs for breast cancer patients. In phase II, a Delphi study was conducted to evaluate the usability of web pages and adequacy of their content. In phase III, the BCPP program was piloted with 10 patients and patients were randomised to an intervention group (n=50) and control group (n=48). According to the results of this study, the Internet is an effective patient education tool for increasing knowledge, and BCPP can be used as a patient education method supporting other education methods. However, breast cancer patients’ perceptions of received knowledge were not fulfilled; their knowledge expectations exceed the perceived amount of received knowledge. Although control group patients’ knowledge expectations were met better with the knowledge they received in hospital compared to the patients in the intervention group, no statistical differences were found between the groups in terms of quality of life, anxiety and treatment-related side effects. However, anxiety decreased faster in the intervention group when looking at internal differences between the groups at different measurement times. In the intervention group the relationship between the difference between knowledge expectations and perceptions of received knowledge correlated significantly with quality of life and anxiety. Their knowledge level was also significant higher than in the control group. These results support the theory that the empowering process requires patient’s awareness of knowledge expectations and perceptions of received knowledge. There is a need to develop patient education to meet patients’ perceptions of received knowledge, including oral and written education and BCPP, to fulfil patient’s knowledge expectations and facilitate the empowering process. Further research is needed on the process of cognitive empowerment with breast cancer patients. There is a need for new patient education methods to increase breast cancer patients’ awareness of knowing.
Resumo:
Ion exchange membranes are indispensable for the separation of ionic species. They can discriminate between anions and cations depending on the type of fixed ionic group present in the membrane. These conventional ion exchange membranes (CIX) have exceptional ionic conductivity, which is advantageous in various electromembrane separation processes such as electrodialysis, electrodeionisation and electrochemical ion exchange. The main disadvantage of CIX membranes is their high electrical resistance owing to the fact that the membranes are electronically non conductive. An alternative can be electroactive ion exchange membranes, which are ionically and electronically conducting. Polypyrrole (PPy) is a type of electroactive ion exchange material as well as a commonly known conducting polymer. When PPy membranes are repeatedly reduced and oxidised, ions are pumped through the membrane. The main aim of this thesis was to develop electroactive cation transport membranes based on PPy for the selective transport of divalent cations. Membranes developed composed of PPy films deposited on commercially available support materials. To carry out this study, cation exchange membranes based on PPy doped with immobile anions were prepared. Two types of dopant anions known to interact with divalent metal ions were considered, namely 4-sulphonic calix[6]arene (C6S) and carboxylated multiwalled carbon nanotubes (CNT). The transport of ions across membranes containing PPy doped with polystyrene sulphonate (PSS) and PPy doped with para-toluene sulphonate (pTS) was also studied in order to understand the nature of ion transport and permeability across PPy(CNT) and PPy(C6S) membranes. In the course of these studies, membrane characterisation was performed using electrochemical quartz crystal microbalance (EQCM) and scanning electron microscopy (SEM). Permeability of the membranes towards divalent cations was explored using a two compartment transport cell. EQCM results demonstrated that the ion exchange behaviour of polypyrrole is dependent on a number of factors including the type of dopant anion present, the type of ions present in the surrounding medium, the scan rate used during the experiment and the previous history of the polymer film. The morphology of PPy films was found to change when the dopant anion was varied and even when the thickness of the film was altered in some cases. In nearly all cases the permeability of the membranes towards metal ions followed the order K+ > Ca2+ > Mn2+. The one exception was PPy(C6S), for which the permeability followed the order Ca2+ ≥ K+ > Mn2+ > Co2+ > Cr3+. The above permeability sequences show a strong dependence on the size of the metal ions with metal ions having the smallest hydrated radii exhibiting the highest flux. Another factor that affected the permeability towards metal ions was the thickness of the PPy films. Films with the least thickness showed higher metal ion fluxes. Electrochemical control over ion transport across PPy(CNT) membrane was obtained when films composed of the latter were deposited on track-etched Nucleopore® membranes as support material. In contrast, the flux of ions across the same film was concentration gradient dependent when the polymer was deposited on polyvinylidene difluoride membranes as support material. However, electrochemical control over metal ion transport was achieved with a bilayer type of PPy film consisting of PPy(pTS)/PPy(CNT), irrespective of the type of support material. In the course of studying macroscopic charge balance during transport experiments performed using a two compartment transport cell, it was observed that PPy films were non-permselective. A clear correlation between the change in pH in the receiving solution and the ions transported across the membrane was observed. A decrease in solution pH was detected when the polymer membrane acted primarily as an anion exchanger, while an increase in pH occurred when it functioned as a cation exchanger. When there was an approximately equal flux of anions and cations across the polymer membrane, the pH in the receiving solution was in the range 6 - 8. These observations suggest that macroscopic charge balance during the transport of cations and anions across polypyrrole membranes was maintained by introduction of anions (OH-) and cations (H+) produced via electrolysis of water.
Resumo:
PURPOSE: To compare salivary and serum cortisol levels, salivary alpha-amylase (sAA), and unstimulated whole saliva (UWS) flow rate in pregnant and non-pregnant women. METHOD: A longitudinal study was conducted at a health promotion center of a university hospital. Nine pregnant and 12 non-pregnant women participated in the study. Serum and UWS were collected and analyzed every trimester and twice a month during the menstrual cycle. The salivary and serum cortisol levels were determined by chemiluminescence assay and the sAA was processed in an automated biochemistry analyzer. RESULTS: Significant differences between the pregnant and non-pregnant groups were found in median [interquartile range] levels of serum cortisol (23.8 µL/dL [19.4-29.4] versus 12.3 [9.6-16.8], p<0.001) and sAA (56.7 U/L [30.9-82.2] versus 31.8 [18.1-53.2], p<0.001). Differences in salivary and serum cortisol (µL/dL) and sAA levels in the follicular versus luteal phase were observed (p<0.001). Median UWS flow rates were similar in pregnant (0.26 [0.15-0.30] mL/min) and non-pregnant subjects (0.23 [0.20-0.32] mL/min). Significant correlations were found between salivary and serum cortisol (p=0.02) and between salivary cortisol and sAA (p=0.01). CONCLUSIONS: Serum cortisol and sAA levels are increased during pregnancy. During the luteal phase of the ovarian cycle, salivary cortisol levels increase, whereas serum cortisol and sAA levels decline.
Resumo:
The efficacy of three vaccines was evaluated in chickens for the control of experimental infection with Salmonella Enteritidis (SE) phage type 4. The vaccines were produced with bacterin, outer membrane proteins (OMP) and fimbriae crude extract (FE). The chickens were vaccinated intramuscularly with two doses of each vaccine at 12 and 15 weeks of age. The chickens were then orally challenged with 10(9) CFU/chicken Salmonella Enteritidis phage type 4 at 18 weeks of age. Fecal swabs were performed for the recovery of shedding SE, and SE was recovered from the liver and spleen. Additionally, antibody titers were measured in the serum by micro-agglutination test. The results indicated that the vaccine produced with bacterin yielded better results and resulted in reduction of fecal shedding and organ invasion by SE after oral challenge, although no vaccine was 100% effective for the control of SE experimental infection.
Resumo:
This paper describes an electronic transducer for multiphase flow measurement. Its high sensitivity, good signal to noise ratio and accuracy are achieved through an electrical impedance sensor with a special guard technique. The transducer consists of a wide bandwidth and high slew rate differentiator where the lead inductance and stray capacitance effects are compensated. The sensor edge effect is eliminated by using a guard electrode based on the virtual ground potential of the operational amplifier. A theoretical modeling and a calibration method are also presented. The results obtained seem to confirm the validity of the proposed technique.
Resumo:
Pulse Response Based Control (PRBC) is a recently developed minimum time control method for flexible structures. The flexible behavior of the structure is represented through a set of discrete time sequences, which are the responses of the structure due to rectangular force pulses. The rectangular force pulses are given by the actuators that control the structure. The set of pulse responses, desired outputs, and force bounds form a numerical optimization problem. The solution of the optimization problem is a minimum time piecewise constant control sequence for driving the system to a desired final state. The method was developed for driving positive semi-definite systems. In case the system is positive definite, some final states of the system may not be reachable. Necessary conditions for reachability of the final states are derived for systems with a finite number of degrees of freedom. Numerical results are presented that confirm the derived analytical conditions. Numerical simulations of maneuvers of distributed parameter systems have shown a relationship between the error in the estimated minimum control time and sampling interval
Resumo:
Fluoresenssiperusteiset kuvantamismenetelmät lysinurisen proteiini-intoleranssin (LPI) soluhäiriön tutkimuksessa Lysinurinen proteiini-intoleranssi on suomalaiseen tautiperintöön kuuluva autosomaalisesti peit¬tyvästi periytyvä sairaus, jonka aiheuttaa kationisten aminohappojen kuljetushäiriö munuaisten ja ohutsuolen epiteelisolujen basolateraalikalvolla. Aminohappojen kuljetushäiriö johtaa moniin oirei¬siin, kuten kasvuhäiriöön, osteoporoosiin, immuunijärjestelmän häiriöihin, oksenteluun ja runsaspro¬teiinisen ravinnon nauttimisen jälkeiseen hyperammonemiaan. LPI-geeni SLC7A7 (solute carrier family 7 member 7) koodaa y+LAT1 proteiinia, joka on basolateraali¬nen kationisten ja neutraalien aminohappojen kuljettimen kevyt ketju, joka muodostaa heterodimee¬rin raskaan alayksikön 4F2hc:n kanssa. Tällä hetkellä SLC7A7-geenistä tunnetaan yli 50 LPI:n aiheut¬tavaa mutaatiota. Tässä tutkimuksessa erityyppisiä y+LAT1:n LPI-mutaatiota sekä yhdeksän C-terminaalista polypep¬tidiä lyhentävää deleetiota kuvannettiin nisäkässoluissa y+LAT1:n GFP (green fluorescent protein) -fuusioproteiineina. Tulokset vahvistivat muissa soluissa tehdyt havainnot siitä, että 4F2hc on edel¬lytyksenä y+LAT1:n solukalvokuljetukselle, G54V-pistemutantti sijaitsee solukalvolla samoin kuin vil¬lityyppinen proteiini, mutta lukukehystä muuttavia ja proteiinia lyhentäviä mutantteja ei kuljeteta solukalvoon. Lisäksi havaittiin, että poikkeuksena tästä säännöstä ovat y+LAT1-deleetioproteiinit, joista puuttui korkeintaan 50 C-terminaalista aminohappoa. Nämä lyhentyneet kuljettimet sijaitsevat solukalvolla kuten villityyppiset ja LPI-pistemutanttiproteiinit. Dimerisaation osuutta kuljetushäiriön synnyssä tutkittiin käyttämällä fluorescence resonance energy transfer (FRET) menetelmää. Heterodimeerin alayksiköistä kloonattiin ECFP (cyan) ja EYFP (yellow) fuusioproteiinit, joita ilmennettiin nisäkässoluissa, ja FRET mitattiin virtaussytometri-FRET -menetel¬mällä (FACS-FRET). Tutkimuksissa kaikkien mutanttien havaittiin dimerisoituvan yhtä tehokkaasti. Kul¬jetushäiriön syynä ei siten ole alayksiköiden dimerisaation estyminen mutaation seurauksena. Tutkimuksessa havaittiin, että kaikki mutantti-y+LAT1-transfektiot tuottavat vähemmän transfektoi¬tuneita soluja kuin villityyppisen y+LAT1:n transfektiot. Solupopulaatioissa, joihin oli tranfektoitu lu¬kukehystä muuttava tai stop-kodonin tuottava mutaatio havaittiin suurempi kuolleisuus kuin saman näytteen transfektoitumattomissa soluissa, kun taas villityyppistä tai G54V-pistemutanttia tuottavas¬sa solupopulaatiossa oli pienempi kuolleisuus kuin saman näytteen fuusioproteiinia ilmentämättö¬missä soluissa. Tulos osoittaa mutanttiproteiinien erilaiset vaikutukset niitä ilmentäviin soluihin, joko suoraan y+LAT1:n tai 4F2hc:n kautta aiheutuneina. LPIFin SLC7A7 lähetti-RNA:n määrä ei merkittävästi poikennut villityyppisen määrästä fibroblasteissa ja lymfoblasteissa. SLC7A7:n promoottorianalyysissä oli osoitettavissa säätelyalueita geenin 5’ ei-koo¬daavalla alueella sekä ensimmäisten kahden intronin alueella. LPI-taudin tautimekanismin kannalta keskeisin tekijä on kuitenkin aminohappokuljetuksen häiriö, jonka vaikutuksesta näistä aminohapoista riippuvaiset prosessit elimistössä eivät toimi normaalisti. Havaittu virheellinen y+LAT1/4F2hc kuljetuskompleksin sijainti edellyttää lisätutkimuksia sen mahdol¬lisen kliinisen merkityksen selvittämiseksi.
Resumo:
The Laboratory of Intelligent Machine researches and develops energy-efficient power transmissions and automation for mobile construction machines and industrial processes. The laboratory's particular areas of expertise include mechatronic machine design using virtual technologies and simulators and demanding industrial robotics. The laboratory has collaborated extensively with industrial actors and it has participated in significant international research projects, particularly in the field of robotics. For years, dSPACE tools were the lonely hardware which was used in the lab to develop different control algorithms in real-time. dSPACE's hardware systems are in widespread use in the automotive industry and are also employed in drives, aerospace, and industrial automation. But new competitors are developing new sophisticated systems and their features convinced the laboratory to test new products. One of these competitors is National Instrument (NI). In order to get to know the specifications and capabilities of NI tools, an agreement was made to test a NI evolutionary system. This system is used to control a 1-D hydraulic slider. The objective of this research project is to develop a control scheme for the teleoperation of a hydraulically driven manipulator, and to implement a control algorithm between human and machine interaction, and machine and task environment interaction both on NI and dSPACE systems simultaneously and to compare the results.
Resumo:
At different growth stages, weeds present different sensitivities to herbicides. Thus, the registered herbicide rate may be reduced under specific conditions, while maintaining satisfactory weed control. This study evaluated the efficiency of reduced rates of the formulated herbicide mixture Velpar K WG® (hexazinone + diuron) + Volcane® (MSMA) for Brachiaria brizantha control at different growth stages. Optimum weed control efficiency was obtained when applying 50% of the recommended rate in younger plants (plants with one to four leaves). In late applications, it is necessary to increase the herbicide rates and, under these conditions, 90% of the recommended rate for (diuron + hexazinone) + MSMA was estimated to be the most economical one.
Resumo:
The weed Borreria densiflora is a management issue in soybean and sugarcane crops from North and Northeastern Brazil. Knowledge upon chemical control of B. densiflora contributes to the integrated management of this weed species, especially when active ingredient options become reduced due to the selection of herbicide resistant or tolerant weed species. Experiments in pre- and post-emergence of B. densiflora were conducted in greenhouse, in a randomized block design and four replications. In pre-emergence, the dose-response curve methodology was used and 7 herbicides were tested. In post-emergence, 9 herbicides at the recommended rate and 4 herbicide mixtures were tested. For pre and post-emergence conditions, evaluations were conducted at 60 and 21 days after treatment (DAT), respectively, and the variables analyzed were weed control and dry weight (%). The results showed options of pre-emergent herbicides that can be used for controlling B. densiflora, especially in sugarcane, where chemical weed control is mainly based on pre-emergent applications. In the current glyphosate resistance scenario, one should consider the use of pre-emergent herbicides within an integrated management of B. densiflora. For satisfactory post-emergence control, B. densiflora plants should be sprayed at the phenological stage of up to three pairs of leaves. Herbicide mixtures have been and will continue to be an important tool in chemical weed management, broadening the spectrum of weed control, while diversifying herbicide mechanisms of action, which helps to prevent or delay the appearance of herbicide resistance.
Resumo:
In photosynthesis, light energy is converted to chemical energy, which is consumed for carbon assimilation in the Calvin-Benson-Bassham (CBB) cycle. Intensive research has significantly advanced the understanding of how photosynthesis can survive in the ever-changing light conditions. However, precise details concerning the dynamic regulation of photosynthetic processes have remained elusive. The aim of my thesis was to specify some molecular mechanisms and interactions behind the regulation of photosynthetic reactions under environmental fluctuations. A genetic approach was employed, whereby Arabidopsis thaliana mutants deficient in specific photosynthetic protein components were subjected to adverse light conditions and assessed for functional deficiencies in the photosynthetic machinery. I examined three interconnected mechanisms: (i) auxiliary functions of PsbO1 and PsbO2 isoforms in the oxygen evolving complex of photosystem II (PSII), (ii) the regulatory function of PGR5 in photosynthetic electron transfer and (iii) the involvement of the Calcium Sensing Receptor CaS in photosynthetic performance. Analysis of photosynthetic properties in psbo1 and psbo2 mutants demonstrated that PSII is sensitive to light induced damage when PsbO2, rather than PsbO1, is present in the oxygen evolving complex. PsbO1 stabilizes PSII more efficiently compared to PsbO2 under light stress. However, PsbO2 shows a higher GTPase activity compared to PsbO1, and plants may partially compensate the lack of PsbO1 by increasing the rate of the PSII repair cycle. PGR5 proved vital in the protection of photosystem I (PSI) under fluctuating light conditions. Biophysical characterization of photosynthetic electron transfer reactions revealed that PGR5 regulates linear electron transfer by controlling proton motive force, which is crucial for the induction of the photoprotective non-photochemical quenching and the control of electron flow from PSII to PSI. I conclude that PGR5 controls linear electron transfer to protect PSI against light induced oxidative damage. I also found that PGR5 physically interacts with CaS, which is not needed for photoprotection of PSII or PSI in higher plants. Rather, transcript profiling and quantitative proteomic analysis suggested that CaS is functionally connected with the CBB cycle. This conclusion was supported by lowered amounts of specific calciumregulated CBB enzymes in cas mutant chloroplasts and by slow electron flow to PSI electron acceptors when leaves were reilluminated after an extended dark period. I propose that CaS is required for calcium regulation of the CBB cycle during periods of darkness. Moreover, CaS may also have a regulatory role in the activation of chloroplast ATPase. Through their diverse interactions, components of the photosynthetic machinery ensure optimization of light-driven electron transport and efficient basic production, while minimizing the harm caused by light induced photodamage.
Resumo:
Background: The function of the autonomic nervous system (ANS) can be evaluated with heart rate variability (HRV). Decreased HRV is associated with aging, the male sex, increased heart rate, and overall increased cardiometabolic risk. It has been hypothesized that early atherosclerotic vascular changes and ANS function are related. Aims: The aims were to assess reference values on HRV in young adults, and examine associations with HRV and cardiometabolic risk factors and metabolic syndrome (MetS) and to study relations between HRV and ultrasonographically measured vascular properties. Participants and methods: The present thesis is part of the Cardiovascular Risk in Young Finns Study. The thesis is based on the follow-up study in 2001, when the study individuals were 24-39 years of age. HRV data were available on 1 956 individuals. Results: HRV was inversely associated with age and heart rate (for all p<0.001). Highfrequency HRV (HF) was higher, and low-frequency HRV (LF) lower in women than men (p<0.0001 for both). MetS was associated with 11% decreased HF and 12% increased LF/HF-ratio in women, and 8% decreased HF and 4% increased LF/HF-ratio in men. Carotid artery distensibility was independently associated with HF and total HRV (for both p<0.05). Conclusions: The reference values in young adults were generated. Decreased HRV was associated with age, the male sex and increased heart rate. Women had higher HF and lower LF variability than men. MetS was related to decrease in HRV. The observed associations between carotid elasticity and HRV, supports the hypothesis that reduction in carotid elasticity may lead to decrease in autonomic cardiac control.