869 resultados para Random walk
Resumo:
A parallel hardware random number generator for use with a VLSI genetic algorithm processing device is proposed. The design uses an systolic array of mixed congruential random number generators. The generators are constantly reseeded with the outputs of the proceeding generators to avoid significant biasing of the randomness of the array which would result in longer times for the algorithm to converge to a solution. 1 Introduction In recent years there has been a growing interest in developing hardware genetic algorithm devices [1, 2, 3]. A genetic algorithm (GA) is a stochastic search and optimization technique which attempts to capture the power of natural selection by evolving a population of candidate solutions by a process of selection and reproduction [4]. In keeping with the evolutionary analogy, the solutions are called chromosomes with each chromosome containing a number of genes. Chromosomes are commonly simple binary strings, the bits being the genes.
Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths
Resumo:
Binding parameters for the interactions of pentagalloyl glucose (PGG) and four hydrolyzable tannins (representing gallotannins and ellagitannins) with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction of PGG and isolated mixtures of tara gallotannins and of sumac gallotannins with gelatin and BSA were of the same order of magnitude for each tannin (in the range of 10(4)-10(5) M-1 for stronger binding sites when using a binding model consisting of two sets of multiple binding sites). In contrast, isolated mixtures of chestnut ellagitannins and of myrabolan ellagitannins exhibited 3-4 orders of magnitude greater equilibrium binding constants for the interaction with gelatin (similar to 2 x 10(6) M-1) than for that with BSA (similar to 8 x 10(2) M-1). Binding stoichiometries revealed that the stronger binding sites on gelatin outnumbered those on BSA by a ratio of at least similar to 2:1 for all of the hydrolyzable tannins studied. Overall, the data revealed that relative binding constants for the interactions with gelatin and BSA are dependent on the structural flexibility of the tannin molecule.
Resumo:
Cedrus atlantica (Pinaceae) is a large and exceptionally long-lived conifer native to the Rif and Atlas Mountains of North Africa. To assess levels and patterns of genetic diversity of this species. samples were obtained throughout the natural range in Morocco and from a forest plantation in Arbucies, Girona (Spain) and analyzed using RAPD markers. Within-population genetic diversity was high and comparable to that revealed by isozymes. Managed populations harbored levels of genetic variation similar to those found in their natural counterparts. Genotypic analyses Of Molecular variance (AMOVA) found that most variation was within populations. but significant differentiation was also found between populations. particularly in Morocco. Bayesian estimates of F,, corroborated the AMOVA partitioning and provided evidence for Population differentiation in C. atlantica. Both distance- and Bayesian-based Clustering methods revealed that Moroccan populations comprise two genetically distinct groups. Within each group, estimates of population differentiation were close to those previously reported in other gymnosperms. These results are interpreted in the context of the postglacial history of the species and human impact. The high degree of among-group differentiation recorded here highlights the need for additional conservation measures for some Moroccan Populations of C. atlantica.
Resumo:
Accelerated failure time models with a shared random component are described, and are used to evaluate the effect of explanatory factors and different transplant centres on survival times following kidney transplantation. Different combinations of the distribution of the random effects and baseline hazard function are considered and the fit of such models to the transplant data is critically assessed. A mixture model that combines short- and long-term components of a hazard function is then developed, which provides a more flexible model for the hazard function. The model can incorporate different explanatory variables and random effects in each component. The model is straightforward to fit using standard statistical software, and is shown to be a good fit to the transplant data. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
In real-world environments it is usually difficult to specify the quality of a preventive maintenance (PM) action precisely. This uncertainty makes it problematic to optimise maintenance policy.-This problem is tackled in this paper by assuming that the-quality of a PM action is a random variable following a probability distribution. Two frequently studied PM models, a failure rate PM model and an age reduction PM model, are investigated. The optimal PM policies are presented and optimised. Numerical examples are also given.
Resumo:
Random number generation (RNG) is a functionally complex process that is highly controlled and therefore dependent on Baddeley's central executive. This study addresses this issue by investigating whether key predictions from this framework are compatible with empirical data. In Experiment 1, the effect of increasing task demands by increasing the rate of the paced generation was comprehensively examined. As expected, faster rates affected performance negatively because central resources were increasingly depleted. Next, the effects of participants' exposure were manipulated in Experiment 2 by providing increasing amounts of practice on the task. There was no improvement over 10 practice trials, suggesting that the high level of strategic control required by the task was constant and not amenable to any automatization gain with repeated exposure. Together, the results demonstrate that RNG performance is a highly controlled and demanding process sensitive to additional demands on central resources (Experiment 1) and is unaffected by repeated performance or practice (Experiment 2). These features render the easily administered RNG task an ideal and robust index of executive function that is highly suitable for repeated clinical use.
Resumo:
The human electroencephalogram (EEG) is globally characterized by a 1/f power spectrum superimposed with certain peaks, whereby the "alpha peak" in a frequency range of 8-14 Hz is the most prominent one for relaxed states of wakefulness. We present simulations of a minimal dynamical network model of leaky integrator neurons attached to the nodes of an evolving directed and weighted random graph (an Erdos-Renyi graph). We derive a model of the dendritic field potential (DFP) for the neurons leading to a simulated EEG that describes the global activity of the network. Depending on the network size, we find an oscillatory transition of the simulated EEG when the network reaches a critical connectivity. This transition, indicated by a suitably defined order parameter, is reflected by a sudden change of the network's topology when super-cycles are formed from merging isolated loops. After the oscillatory transition, the power spectra of simulated EEG time series exhibit a 1/f continuum superimposed with certain peaks. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates random number generators in stochastic iteration algorithms that require infinite uniform sequences. We take a simple model of the general transport equation and solve it with the application of a linear congruential generator, the Mersenne twister, the mother-of-all generators, and a true random number generator based on quantum effects. With this simple model we show that for reasonably contractive operators the theoretically not infinite-uniform sequences perform also well. Finally, we demonstrate the power of stochastic iteration for the solution of the light transport problem.
Resumo:
Urban surveillance footage can be of poor quality, partly due to the low quality of the camera and partly due to harsh lighting and heavily reflective scenes. For some computer surveillance tasks very simple change detection is adequate, but sometimes a more detailed change detection mask is desirable, eg, for accurately tracking identity when faced with multiple interacting individuals and in pose-based behaviour recognition. We present a novel technique for enhancing a low-quality change detection into a better segmentation using an image combing estimator in an MRF based model.
Resumo:
The problem of identification of a nonlinear dynamic system is considered. A two-layer neural network is used for the solution of the problem. Systems disturbed with unmeasurable noise are considered, although it is known that the disturbance is a random piecewise polynomial process. Absorption polynomials and nonquadratic loss functions are used to reduce the effect of this disturbance on the estimates of the optimal memory of the neural-network model.
Resumo:
The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x̂ direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising ẑ direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.