963 resultados para Radiative lifetime
Resumo:
Important qualities of aggregates used for thin maintenance surface (TMS) include an aggregates wear and skid resistance, shape, gradation, and size. The wear and skid resistance of an aggregate influences the lifetime of the individual aggregate particles, and thus the lifetime of the TMS. A TMS’s effectiveness is impacted by the shape, gradation, and size of the aggregate used for the surfacing material along with the lifetime of the aggregate.
Resumo:
The issue of corrosion of winter maintenance equipment is becoming of greater concern because of the increased use of liquid solutions of ice control chemicals, as opposed to their application in solid form. Being in liquid form, the ice control chemicals can more easily penetrate into the nooks and crannies on equipment and avoid being cleansed from the vehicle. Given this enhanced corrosive ability, methods must be found to minimize corrosion. The methods may include coatings, additives, cleansing techniques, other methods, and may also include doing nothing, and accepting a reduced equipment lifetime as a valid (perhaps) trade off with the enhanced benefits of using liquid ice control chemicals. In reality, some combination of these methods may prove to be optimal. Whatever solutions are selected, they must be relatively cheap and durable. The latter point is critical because of the environment in which maintenance trucks operate, in which scrapes, scratches and dents are facts of life. Protection methods that are not robust simply will not work. The purpose of this study is to determine how corrosion occurs on maintenance trucks, to find methods that would minimize the major corrosion mechanisms, and to
Resumo:
A good system of preventive bridge maintenance enhances the ability of engineers to manage and monitor bridge conditions, and take proper action at the right time. Traditionally infrastructure inspection is performed via infrequent periodical visual inspection in the field. Wireless sensor technology provides an alternative cost-effective approach for constant monitoring of infrastructures. Scientific data-acquisition systems make reliable structural measurements, even in inaccessible and harsh environments by using wireless sensors. With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. The main goal of this project was to implement a wireless sensor network for monitoring the behavior and integrity of highway bridges. At the core of the system is a low-cost, low power wireless strain sensor node whose hardware design is optimized for structural monitoring applications. The key components of the systems are the control unit, sensors, software and communication capability. The extensive information developed for each of these areas has been used to design the system. The performance and reliability of the proposed wireless monitoring system is validated on a 34 feet span composite beam in slab bridge in Black Hawk County, Iowa. The micro strain data is successfully extracted from output-only response collected by the wireless monitoring system. The energy efficiency of the system was investigated to estimate the battery lifetime of the wireless sensor nodes. This report also documents system design, the method used for data acquisition, and system validation and field testing. Recommendations on further implementation of wireless sensor networks for long term monitoring are provided.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
A large body of data gathered over the last decades has delineated the neuronal pathways that link the central nervous system with the autonomic innervation of the endocrine pancreas, which controls alpha- and beta-cell secretion activity and mass. These are important regulatory functions that are certainly keys for preserving the capacity of the endocrine pancreas to control glucose homeostasis over a lifetime. Identifying the cells involved in controlling the autonomic innervation of the endocrine pancreas, in response to nutrient, hormonal and environmental cues and how these cues are detected to activate neuronal activity are important goals of current research. Elucidation of these questions may possibly lead to new means for preserving or restoring defects in insulin and glucagon secretion associated with type 2 diabetes.
Resumo:
Each year approximately thirty to forty thousand children and youth come to the attention of Iowa’s child welfare and juvenile justice systems and, of those, four to five thousand enter foster care to address child safety or public safety. For most, foster care is a short-term placement designed to allow time to address the reason for removal and to receive the support and services necessary for children to return to their family and community. Unfortunately, too many children and youth remain in foster care too long. Too many youth exit care through emancipation rather than to a permanent family and enduring relationship. Too many young people never realize the security of connections to adults who will be there for a lifetime. When our system fails to find forever families for youth in foster care, long-term outcomes are bleak. A young person’s permanency status is inextricably intertwined with their overall well being.
Resumo:
Atrial arrhythmias (AAs) are a common complication in adult patients with congenital heart disease. We sought to compare the lifetime prevalence of AAs in patients with right- versus left-sided congenital cardiac lesions and their effect on the prognosis. A congenital heart disease diagnosis was assigned using the International Disease Classification, Ninth Revision, diagnostic codes in the administrative databases of Quebec, from 1983 to 2005. Patients with AAs were those diagnosed with an International Disease Classification, Ninth Revision, code for atrial fibrillation or intra-atrial reentry tachycardia. To ensure that the diagnosis of AA was new, a washout period of 5 years after entry into the database was used, a period during which the patient could not have received an International Disease Classification, Ninth Revision, code for AA. The cumulative lifetime risk of AA was estimated using the Practical Incidence Estimators method. The hazard ratios (HRs) for mortality, morbidity, and cardiac interventions were compared between those with right- and left-sided lesions after adjustment for age, gender, disease severity, and cardiac risk factors. In a population of 71,467 patients, 7,756 adults developed AAs (isolated right-sided, 2,229; isolated left-sided, 1,725). The lifetime risk of developing AAs was significantly greater in patients with right- sided than in patients with left-sided lesions (61.0% vs 55.4%, p <0.001). The HR for mortality and the development of stroke or heart failure was similar in both groups (HR 0.96, 95% confidence interval [CI] 0.86 to 1.09; HR 0.94, 95% CI 0.80 to 1.09; and HR 1.10, 95% CI 0.98 to 1.23, respectively). However, the rates of cardiac catheterization (HR 0.63, 95% CI 0.55 to 0.72), cardiac surgery (HR 0.40, 95% CI 0.36 to 0.45), and arrhythmia surgery (HR 0.77, 95% CI 0.6 to 0.98) were significantly less for patients with right-sided lesions. In conclusion, patients with right-sided lesions had a greater lifetime burden of AAs. However, their morbidity and mortality were no less than those with left-sided lesions, although the rate of intervention was substantially different.
Resumo:
We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.
Resumo:
Time-resolved measurements of tissue autofluorescence (AF) excited at 405 nm were carried out with an optical-fiber-based spectrometer in the bronchi of 11 patients. The objectives consisted of assessing the lifetime as a new tumor/normal (T/N) tissue contrast parameter and trying to explain the origin of the contrasts observed when using AF-based cancer detection imaging systems. No significant change in the AF lifetimes was found. AF bronchoscopy performed in parallel with an imaging device revealed both intensity and spectral contrasts. Our results suggest that the spectral contrast might be due to an enhanced blood concentration just below the epithelial layers of the lesion. The intensity contrast probably results from the thickening of the epithelium in the lesions. The absence of T/N lifetime contrast indicates that the quenching is not at the origin of the fluorescence intensity and spectral contrasts. These lifetimes (6.9 ns, 2.0 ns, and 0.2 ns) were consistent for all the examined sites. The fact that these lifetimes are the same for different emission domains ranging between 430 and 680 nm indicates that there is probably only one dominant fluorophore involved. The measured lifetimes suggest that this fluorophore is elastin.
Resumo:
The water content dynamics in the upper soil surface during evaporation is a key element in land-atmosphere exchanges. Previous experimental studies have suggested that the soil water content increases at the depth of 5 to 15 cm below the soil surface during evapo- ration, while the layer in the immediate vicinity of the soil surface is drying. In this study, the dynamics of water content profiles exposed to solar radiative forcing was monitored at a high temporal resolution using dielectric methods both in the presence and absence of evaporation. A 4-d comparison of reported moisture content in coarse sand in covered and uncovered buckets using a commercial dielectric-based probe (70 MHz ECH2O-5TE, Decagon Devices, Pullman, WA) and the standard 1-GHz time domain reflectometry method. Both sensors reported a positive correlation between temperature and water content in the 5- to 10-cm depth, most pronounced in the morning during heating and in the afternoon during cooling. Such positive correlation might have a physical origin induced by evaporation at the surface and redistribution due to liquid water fluxes resulting from the temperature- gradient dynamics within the sand profile at those depths. Our experimental data suggest that the combined effect of surface evaporation and temperature-gradient dynamics should be considered to analyze experimental soil water profiles. Additional effects related to the frequency of operation and to protocols for temperature compensation of the dielectric sensors may also affect the probes' response during large temperature changes.
Resumo:
The formation of toxic protein aggregates is a common denominator to many neurodegenerative diseases and aging. Accumulation of toxic, possibly infectious protein aggregates induces a cascade of events, such as excessive inflammation, the production of reactive oxygen species, apoptosis and neuronal loss. A network of highly conserved molecular chaperones and of chaperone-related proteases controls the fold-quality of proteins in the cell. Most molecular chaperones can passively prevent protein aggregation by binding misfolding intermediates. Some molecular chaperones and chaperone-related proteases, such as the proteasome, can also hydrolyse ATP to forcefully convert stable harmful protein aggregates into harmless natively refoldable, or protease-degradable, polypeptides. Molecular chaperones and chaperone-related proteases thus control the delicate balance between natively folded functional proteins and aggregation-prone misfolded proteins, which may form during the lifetime and lead to cell death. Abundant data now point at the molecular chaperones and the proteases as major clearance mechanisms to remove toxic protein aggregates from cells, delaying the onset and the outcome of protein-misfolding diseases. Therapeutic approaches include treatments and drugs that can specifically induce and sustain a strong chaperone and protease activity in cells and tissues prone to toxic protein aggregations.
Resumo:
Inflammation is one possible mechanism underlying the associations between mental disorders and cardiovascular diseases (CVD). However, studies on mental disorders and inflammation have yielded inconsistent results and the majority did not adjust for potential confounding factors. We examined the associations of several pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and high sensitive C-reactive protein (hsCRP) with lifetime and current mood, anxiety and substance use disorders (SUD), while adjusting for multiple covariates. The sample included 3719 subjects, randomly selected from the general population, who underwent thorough somatic and psychiatric evaluations. Psychiatric diagnoses were made with a semi-structured interview. Major depressive disorder was subtyped into "atypical", "melancholic", "combined atypical-melancholic" and "unspecified". Associations between inflammatory markers and psychiatric diagnoses were assessed using multiple linear and logistic regression models. Lifetime bipolar disorders and atypical depression were associated with increased levels of hsCRP, but not after multivariate adjustment. After multivariate adjustment, SUD remained associated with increased hsCRP levels in men (β = 0.13 (95% CI: 0.03,0.23)) but not in women. After multivariate adjustment, lifetime combined and unspecified depression were associated with decreased levels of IL-6 (β = -0.27 (-0.51,-0.02); β = -0.19 (-0.34,-0.05), respectively) and TNF-α (β = -0.16 (-0.30,-0.01); β = -0.10 (-0.19,-0.02), respectively), whereas current combined and unspecified depression were associated with decreased levels of hsCRP (β = -0.20 (-0.39,-0.02); β = -0.12 (-0.24,-0.01), respectively). Our data suggest that the significant associations between increased hsCRP levels and mood disorders are mainly attributable to the effects of comorbid disorders, medication as well as behavioral and physical CVRFs.
Resumo:
Biochar has a relatively long half-life in soil and can fundamentally alter soil properties, processes, and ecosystem services. The prospect of global-scale biochar application to soils highlights the importance of a sophisticated and rigorous certification procedure. The objective of this work was to discuss the concept of integrating biochar properties with environmental and socioeconomic factors, in a sustainable biochar certification procedure that optimizes complementarity and compatibility between these factors over relevant time periods. Biochar effects and behavior should also be modelled at temporal scales similar to its expected functional lifetime in soils. Finally, when existing soil data are insufficient, soil sampling and analysis procedures need to be described as part of a biochar certification procedure.
Resumo:
The silicon photomultiplier (SiPM) is a novel detector technology that has undergone a fast development in the last few years, owing to its single-photon resolution and ultra-fast response time. However, the typical high dark count rates of the sensor may prevent the detection of low intensity radiation fluxes. In this article, the time-gated operation with short active periods in the nanosecond range is proposed as a solution to reduce the number of cells fired due to noise and thus increase the dynamic range. The technique is aimed at application fields that function under a trigger command, such as gated fluorescence lifetime imaging microscopy.
Resumo:
[Contient] 2.1. Access to dental care: an indicator of performance of health care systems. 21.2. Data on individuals and health systems. 21.3 Lifetime underuse of dental care in European countries. 21.4. Elements of health policy regarding dental care in European Countries. 21.5. Reasons for missing routine dental controls in European countries.21.6. Conclusions.