997 resultados para R-banding
Resumo:
The Iowa State Highway Commission has adopted a number of rigid safety requirements that the Bureau of Public Roads has set forth as standards for road construction. One of these safety requirements is the elimination of two piers on Interstate grade separations, thus leaving two long spans. These longer spans lower the ability of prestressed concrete beams to compete economically with steel beams. In an effort to be more competitive, the prestressing companies have been studying the use of lightweight aggregate in structural concrete.
Resumo:
A number of concrete admixtures are presently used in various concretes principally for water reduction, retardation, or air entrainment. Whereas the use of these admixtures in concrete placement is well documented, there is limited information showing their effects on durability and drying shrinkage. Since the durability and the shrinkage of concrete can have a pronounce effect on a structures longevity, wear characteristics, and reaction to loading, it is desirable to know the relative effects of different admixtures prior to concrete placement. The purpose of this study is to provide information which could be used to establish durability and shrinkage criterion for evaluating the admixtures currently in use and those whose use may be proposed.
Resumo:
Skid resistance is a major concern of the safety engineer since wet pavement conditions are present for approximately 18% of the total accidents in Iowa according to studies by the Traffic and Safety Department. Many of these accidents may be influenced by the low skid resistant quality of the pavement. The size, shape, type, and arrangement of the concrete's particles interrelate with each other in a complex manner to give us frictional resistance. The purpose of this investigation was to determine which method of texturing provides the best skid resistance properties on portland cement concrete pavement.
Resumo:
The compressive strength of concrete is an important factor in the design of concrete structures and pavements. To assure the quality of the concrete placed at the project, concrete compressive cylinders are made at the jobsite. These cylinders undergo a destructive test to determine their compressive strength. However, the determination of concrete compressive strength of the concrete actually in the structure or pavement is frequently desirable. For this reason, a nondestructive test of the concrete is required. A nondestructive test of concrete compressive strength should be economical, easily performed by field personnel, and capable of producing accurate, reproducible results. The nondestructive test should be capable of detecting the extent of poor concrete in a pavement or structure due to improper handling, placement, or variations in mixing or materials.
Resumo:
[Vente. Art. 1858-12-13 - 1858-12-14. Paris]
Resumo:
[Vente. Art. 1859-03-28. Paris]
Resumo:
[Acte pontifical. 1517-01-00]
Resumo:
This study was designed to provide background information on asphaltic concrete mixtures peculiar to northwest Iowa. This background is necessary to provide the basis for future specifications. There were several projects let in 1967 involving l", 3/4" and 3/8" mixes of Type "B'' asphaltic concrete which specified in part, II Not less than 40% of the material passing the No. 200 sieve shall be pulverized limestone or mineral filler, but in no case shall the per cent of pulverized limestone or mineral filler passing the No. 200 sieve be less than 2%. No credit will be allowed for limestone in gravel - II Northwest Iowa has no suitable limestone or mineral filler locally available. As a result, this material has to be imported, raising the cost of the mix approximately twenty-five cents per ton. The purpose of this study, therefore, was designed to compare some original job mix samples with alternate mixes from the same local material, but without the addition of pulverized limestone or mineral filler. Since the filler from the crushed gravel does not have the same crushing characteristics or sieve analysis as the pulverized limestone or mineral filler, they could not be compared on an equal percentage basis. Therefore, the alternate mixes were made to conform to the following proposed specification, "No less than 40% of the material passing No. 200 sieve shall be pulverized limestone or mineral filler or a 100% crushed gravel, but in no case shall the per cent of pulverized limestone or mineral filler or a 100% crushed gravel passing the No. 200 sieve be less than 2%."