953 resultados para Quasilinear Equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35J70, 35P15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 45F15, 45G10, 46B38.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65H10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34C10, 34C15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65G99, 65K10, 47H04.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34K15, 34C10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34C10, 34C15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 34A08, 34K37

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 35R11, 42A38, 26A33, 33E12

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 44A35, 44A45, 44A40, 35K20, 35K05

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 34A08, 34A37, 49N70

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 39A10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 42A38. Secondary 42B10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical method for the Dirichlet initial boundary value problem for the heat equation in the exterior and unbounded region of a smooth closed simply connected 3-dimensional domain is proposed and investigated. This method is based on a combination of a Laguerre transformation with respect to the time variable and an integral equation approach in the spatial variables. Using the Laguerre transformation in time reduces the parabolic problem to a sequence of stationary elliptic problems which are solved by a boundary layer approach giving a sequence of boundary integral equations of the first kind to solve. Under the assumption that the boundary surface of the solution domain has a one-to-one mapping onto the unit sphere, these integral equations are transformed and rewritten over this sphere. The numerical discretisation and solution are obtained by a discrete projection method involving spherical harmonic functions. Numerical results are included.