918 resultados para Quadrupole mass spectrometry
Resumo:
2,3-Dimethyl-2,3-dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour-phase detection systems. In this study, the formation and detection of gas-phase \[M+H](+), \[M+Li](+), \[M+NH(4)](+) and \[M+Na](+) adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The \[M+H](+) ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50 degrees C. In contrast, the \[M+Na](+) ion demonstrated increasing ion abundance at source temperatures up to 105 degrees C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision-induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source-formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the \[M+Na](+) adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright (C) 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
Results of mass spectrometric studies are reported for the collisional dissociation of Group XI (Cu, Ag, Au) metal ion complexes with fatty acids (palmitic, oleic, linoleic and a-linolenic) and glycerolipids. Remarkably, the formation of M2H+ ions (M = Cu, Ag) is observed as a dissociation product of the ion complexes containing more than one metal cation and only if the lipid in the complex contains a double bond. Ag2H+ is formed as the main dissociation channel for all three of the fatty acids containing double bonds that were investigated while Cu2H+ is formed with one of the fatty acids and, although abundant, is not the dominant dissociation channel. Also. Cu(I) and Ag(I) ion complexes were observed with glycerolipids (including triacylglycerols and glycerophospholipids) containing either saturated or unsaturated fatty acid substituents. Interestingly. Ag2H+ ion is formed in a major fragmentation channel with the lipids that are able to form the complex with two metal cations (triacylglycerols and glycerophosphoglycerols), while lipids containing a fixed positive charge (glycerophospocholines) complex only with a single metal cation. The formation of Ag2H+ ion is a significant dissociation channel from the complex ion Ag-2(L-H)(+) where L = Glycerophospholipid (GP) (18:1/18:1). Cu(I) also forms complexes of two metal cations with glycerophospholipids but these do not produce Cu2H+ upon dissociation. Rather organic fragments, not containing Cu(I), are formed, perhaps due to different interactions of these metal cations with lipids resulting from the much smaller ionic radius of Cu(I) compared to Ag(I) (C).
Resumo:
The last few years have brought an increasing interest in the chemistry of rite interstellar and circumstellar environs. Many of the molecular species discovered in remote galactic regions have been dubbed 'non-terrestrial' because of their unique structures (Thaddeus et al, 1993). These findings have provided a challenge to chemists in many differing fields to attempt to generate these unusual species in the laboratory of particular recent interest have been the unsaturated hydrocarbon families, CnH and CnH2, which have been pursued by a number of diverse methodologies. A wine range of heterocumulenes, including CnO, HCnO, CnN, HCnN, CnS, HCnS, CnSi and HCnSi have also provided intriguing targets for laboratory experiments. Strictly the term cumulene refers to a class of compounds that possess a series of adjacent double bonds, with allene representing the simplest example (H2C=C=CH2). However for many of the non-terrestrial molecules presented here, the carbon chain cannot be described in terms of a single simple valence structure, and so we use the terms cumulene and heterocumulene in a more general sense: to describe molecular species that contain an unsaturated polycarbon chain. Mass spectrometry has proved an invaluable tool in the quest for interstellar cumulenes and heterocumulenes in the laboratory it has the ability in its many forms, to (i) generate charged analogs of these species in the gas phase, (ii) probe their connectivity, ion chemistry, and thermochemistry, and (iii) in some cases, elucidate the neutrals themselves. Here, we will discuss the progress of these studies to this time. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Molecular orbital calculations have predicted the stability of a range of connectivities for the radical C5H potential surface. The most energetically favorable of these include the linear C4CH geometry and two ring-chain structures HC2C3 and C2C3H The corresponding anions are also shown to be theoretically stable, and furthermore, a fourth isomer, C2CHC2, is predicted to be the most stable anion connectivity. These results have motivated experimental efforts. Methodologies for the generation of the non-ring-containing isomeric anions C4CH and C2CHC2 have been developed utilizing negative ion mass spectrometry. The absolute connectivities of the anions have been established using deuterium labeling, charge reversal, and neutralization reionization techniques. The success of the latter experiment confirms theoretical predictions of stability of the corresponding neutral species. This is the first reported observation of the neutral C2CHC2 species that calculations predict to be substantially less stable than the C4CH connectivity but still bound relative to isomerization processes.
Resumo:
The anion radicals CnOn-. (n = 3-6) can be generated by ionization of cyclic carbonyl compounds in the negative ion mode. The ions as well as the corresponding neutral counterparts are probed by means of different mass spectrometric techniques. The results suggest that oxocarbons, i.e. cyclic polyketones, are formed under conservation of the skeletons of the precursor molecules. At least for n = 3, however, the experimental findings indicate partial rearrangement of the expected cyclopropanetrione structure to an oxycarboxylate for the anion, i.e. O-.-C=C-CO2-. For n = 4 and 6 almost complete dissociation of the neutral polyones into carbon monoxide is found, whereas for n = 5 a distinct recovery signal indicates the generation of genuine cyclopentanepentaone.
Resumo:
Five different anionic [C3′H4′O]•- isomers, i.e. the radical anions of acrolein, acetyl carbene, formyl methyl carbene, methoxy vinylidene, and oxyallyl are generated in an ion beam mass spectrometer and subjected to neutralization-reionization (NR) mass spectrometric experiments including neutral and ion decomposition difference (NIDD) mass spectrometry; the latter allows for the examination of the neutrals' unimolecular reactivity. Further, the anionic, the singlet and triplet neutral, and the cationic [C3′H4′O] •-/0/•+ potentialenergy surfaces are calculated at the B3LYP/6-311++G(d,p) level of theory. For some species, notably the singlet state of oxyallyl, the theoretical treatment is complemented by G2, CASSCF, and MR-CI calculations. Theory and experiment are in good agreement in that at the neutral stage (i) acrolein does not react within the μsec timescale, (ii) acetyl and formyl methyl carbenes isomerize to methyl ketene, (iii) methoxy vinylidene rearranges to methoxy acetylene, (iv) singlet 1A1 oxyallyl undergoes ring closure to cyclopropanone, and (v) triplet 3B2 oxyallyl may have a lifetime sufficient to survive a NR experiment.
Resumo:
The acyl composition of membrane phospholipids in kidney and brain of mammals of different body mass was examined. It was hypothesized that reduction in unsaturation index (number of double bonds per 100 acyl chains) of membrane phospholipids with increasing body mass in mammals would be made-up of similar changes in acyl composition across all phospholipid classes and that phospholipid class distribution would be regulated and similar in the same tissues of the different-sized mammals. The results of this study supported both hypotheses. Differences in membrane phospholipid acyl composition (i. e. decreased omega-3 fats, increased monounsaturated fats and decreased unsaturation index with increasing body size) were not restricted to any specific phospholipid molecule or to any specific phospholipid class but were observed in all phospholipid classes. With increase in body mass of mammals both monounsaturates and use of less unsaturated polyunsaturates increases at the expense of the long-chain highly unsaturated omega-3 and omega-6 polyunsaturates, producing decreases in membrane unsaturation. The distribution of membrane phospholipid classes was essentially the same in the different-sized mammals with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) together constituting similar to 91% and similar to 88% of all phospholipids in kidney and brain, respectively. The lack of sphingomyelin in the mouse tissues and higher levels in larger mammals suggests an increased presence of membrane lipid rafts in larger mammals. The results of this study support the proposal that the physical properties of membranes are likely to be involved in changing metabolic rate.
Resumo:
Molecular orbital calculations have predicted the stability of a range of connectivities for the radical C5H potential surface. The most energetically favorable of these include the linear C4CH geometry and two ring-chain structures HC2C3 and C2C3H The corresponding anions are also shown to be theoretically stable, and furthermore, a fourth isomer, C2CHC2, is predicted to be the most stable anion connectivity. These results have motivated experimental efforts. Methodologies for the generation of the non-ring-containing isomeric anions C4CH and C2CHC2 have been developed utilizing negative ion mass spectrometry. The absolute connectivities of the anions have been established using deuterium labeling, charge reversal, and neutralization reionization techniques. The success of the latter experiment confirms theoretical predictions of stability of the corresponding neutral species. This is the first reported observation of the neutral C2CHC2 species that calculations predict to be substantially less stable than the C4CH connectivity but still bound relative to isomerization processes.
Resumo:
The gas phase reactions of the bridgehead 3-carboxylato-1-adamantyl radical anion were observed with a series of neutral reagents using a modified electrospray ionisation linear ion trap mass spectrometer. This distonic radical anion was observed to undergo processes suggestive of radical reactivity including radical-radical combination reactions, substitution reactions and addition to carbon-carbon double bonds. The rate constants for reactions of the 3-carboxylato-1-adamantyl radical anion with the following reagents were measured ( in units 10(-12) cm(3) molecule(-1) s(-1)): O-18(2) ( 85 +/- 4), NO ( 38.4 +/- 0.4), I-2 ( 50 +/- 50), Br-2 ( 8 +/- 2), CH3SSCH3 ( 12 +/- 2), styrene ( 1.20 +/- 0.03), CHCl3 ( H abstraction 0.41 +/- 0.06, Cl abstraction 0.65 +/- 0.1), CDCl3 ( D abstraction 0.035 +/- 0.01, Cl abstraction 0.723 +/- 0.005), allyl bromide (Br abstraction 0.53 +/- 0.04, allylation 0.25 +/- 0.01). Collision rates were calculated and reaction efficiencies are also reported. This study represents the first quantitative measurement of the gas phase reactivity of a bridgehead radical and suggests that distonic radical anions are good models for the study of their elusive uncharged analogues.
Resumo:
Recent developments in mass spectrometry and chromatography provide new possibilities for the identification and in some instances quantification of a wide range of lipids in complex matrices. These advances in analytical technologies have provided a tantalizing glimpse of the true structural diversity of lipids in nature and have reinvigorated interest in the role of lipids in biology. While technological advances have been impressive, difficulties in the ready identification of sites of unsaturation (i.e., double bond position) within these molecules presents a significant impediment to understanding lipid biochemistry. This is of particular importance given the growing body of literature suggesting that the presence of naturally occurring lipid double bond isomers can have a significant influence, both positive and negative, on the development of pathologies such as cancer, cardiovascular disease and type 2 diabetes. This article provides a critical review of the Current suite of analytical approaches to the challenge of identification of the position of carbon-carbon double bonds in intact lipids. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
The extensive use of alkoxyamines in controlled radical polymerisation and polymer stabilisation is based on rapid cycling between the alkoxyamine (R1R2NO–R3) and a stable nitroxyl radical (R1R2NO•) via homolysis of the labile O–C bond. Competing homolysis of the alkoxyamine N–O bond has been predicted to occur for some substituents leading to production of aminyl and alkoxyl radicals. This intrinsic competition between the O–C and N–O bond homolysis processes has to this point been difficult to probe experimentally. Herein we examine the effect of local molecular structure on the competition between N–O and O–C bond cleavage in the gas phase by variable energy tandem mass spectrometry in a triple quadrupole mass spectrometer. A suite of cyclic alkoxyamines with remote carboxylic acid moieties (HOOC–R1R2NO–R3) were synthesised and subjected to negative ion electrospray ionisation to yield [M – H]− anions where the charge is remote from the alkoxyamine moiety. Collision-induced dissociation of these anions yield product ions resulting, almost exclusively, from homolysis of O–C and/or N–O bonds. The relative efficacy of N–O and O–C bond homolysis was examined for alkoxyamines incorporating different R3 substituents by varying the potential difference applied to the collision cell, and comparing dissociation thresholds of each product ion channel. For most R3 substituents, product ions from homolysis of the O–C bond are observed and product ions resulting from cleavage of the N–O bond are minor or absent. A limited number of examples were encountered however, where N–O homolysis is a competitive dissociation pathway because the O–C bond is stabilised by adjacent heteroatom(s) (e.g., R3 = CH2F). The dissociation threshold energies were compared for different alkoxyamine substituents (R3) and the relative ordering of these experimentally determined energies is shown to correlate with the bond dissociation free energies, calculated by ab initio methods. Understanding the structure-dependent relationship between these rival processes will assist in the design and selection of alkoxyamine motifs that selectively promote the desirable O–C homolysis pathway.
Resumo:
The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.
Resumo:
The present challenge in drug discovery is to synthesize new compounds efficiently in minimal time. The trend is towards carefully designed and well-characterized compound libraries because fast and effective synthesis methods easily produce thousands of new compounds. The need for rapid and reliable analysis methods is increased at the same time. Quality assessment, including the identification and purity tests, is highly important since false (negative or positive) results, for instance in tests of biological activity or determination of early-ADME parameters in vitro (the pharmacokinetic study of drug absorption, distribution, metabolism, and excretion), must be avoided. This thesis summarizes the principles of classical planar chromatographic separation combined with ultraviolet (UV) and mass spectrometric (MS) detection, and introduces powerful, rapid, easy, low-cost, and alternative tools and techniques for qualitative and quantitative analysis of small drug or drug-like molecules. High performance thin-layer chromatography (HPTLC) was introduced and evaluated for fast semi-quantitative assessment of the purity of synthesis target compounds. HPTLC methods were compared with the liquid chromatography (LC) methods. Electrospray ionization mass spectrometry (ESI MS) and atmospheric pressure matrix-assisted laser desorption/ionization MS (AP MALDI MS) were used to identify and confirm the product zones on the plate. AP MALDI MS was rapid, and easy to carry out directly on the plate without scraping. The PLC method was used to isolate target compounds from crude synthesized products and purify them for bioactivity and preliminary ADME tests. Ultra-thin-layer chromatography (UTLC) with AP MALDI MS and desorption electrospray ionization mass spectrometry (DESI MS) was introduced and studied for the first time. Because of the thinner adsorbent layer, the monolithic UTLC plate provided 10 100 times better sensitivity in MALDI analysis than did HPTLC plates. The limits of detection (LODs) down to low picomole range were demonstrated for UTLC AP MALDI and UTLC DESI MS. In a comparison of AP and vacuum MALDI MS detection for UTLC plates, desorption from the irregular surface of the plates with the combination of an external AP MALDI ion source and an ion trap instrument provided clearly less variation in mass accuracy than the vacuum MALDI time-of-flight (TOF) instrument. The performance of the two-dimensional (2D) UTLC separation with AP MALDI MS method was studied for the first time. The influence of the urine matrix on the separation and the repeatability was evaluated with benzodiazepines as model substances in human urine. The applicability of 2D UTLC AP MALDI MS was demonstrated in the detection of metabolites in an authentic urine sample.
Resumo:
Understanding the polymerization mechanism of a precursor is indispensable to enhance the requisite material properties. In situ mass spectroscopy and X-ray photoelectron spectroscopy is used in this study to understand the RF plasma polymerization of γ-terpinene. High-resolution mass spectra positive ion mass spectrometry data of the plasma phase demonstrates the presence of oligomeric species of the type [M+H]+ and [2M+H]+, where M represents a unit of the starting material. In addition, there is abundant fragmented species, with most dominant being [M+] (136 m/z), C10H13+ (133 m/z), C9H11+ (119 m/z), and C7H9+ (93 m/z). The results reported in this manuscript enables to comprehend the relationship between the degree of incorporation of oxygen and the rate of deposition with the input RF power.
Resumo:
Miniaturized mass spectrometric ionization techniques for environmental analysis and bioanalysis Novel miniaturized mass spectrometric ionization techniques based on atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were studied and evaluated in the analysis of environmental samples and biosamples. The three analytical systems investigated here were gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry (GC-µAPCI-MS) and gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry (GC-µAPPI-MS), where sample pretreatment and chromatographic separation precede ionization, and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS), where the samples are analyzed either as such or after minimal pretreatment. The gas chromatography-microchip atmospheric pressure ionization-mass spectrometry (GC-µAPI-MS) instrumentations were used in the analysis of polychlorinated biphenyls (PCBs) in negative ion mode and 2-quinolinone-derived selective androgen receptor modulators (SARMs) in positive ion mode. The analytical characteristics (i.e., limits of detection, linear ranges, and repeatabilities) of the methods were evaluated with PCB standards and SARMs in urine. All methods showed good analytical characteristics and potential for quantitative environmental analysis or bioanalysis. Desorption and ionization mechanisms in DAPPI were studied. Desorption was found to be a thermal process, with the efficiency strongly depending on thermal conductivity of the sampling surface. Probably the size and polarity of the analyte also play a role. In positive ion mode, the ionization is dependent on the ionization energy and proton affinity of the analyte and the spray solvent, while in negative ion mode the ionization mechanism is determined by the electron affinity and gas-phase acidity of the analyte and the spray solvent. DAPPI-MS was tested in the fast screening analysis of environmental, food, and forensic samples, and the results demonstrated the feasibility of DAPPI-MS for rapid screening analysis of authentic samples.