798 resultados para Quad-Play trend
Resumo:
Photophysiological processes as well as uptake characteristics of iron and inorganic carbon were studied in inshore phytoplankton assemblages of the Western Antarctic Peninsula (WAP) and offshore assemblages of the Drake Passage. Chlorophyll a concentrations and primary productivity decreased from in- to offshore waters. The inverse relationship between low maximum quantum yields of photochemistry in PSII (Fv/Fm) and large sizes of functional absorption cross sections (sigma PSII) in offshore communities indicated iron-limitation. Congruently, the negative correlation between Fv/Fm values and iron uptake rates across our sampling locations suggest an overall better iron uptake capacity in iron-limited pelagic phytoplankton communities. Highest iron uptake capacities could be related to relative abundances of the haptophyte Phaeocystis antarctica. As chlorophyll a-specific concentrations of humic-like substances were similarly high in offshore and inshore stations, we suggest humic-like substances may play an important role in iron chemistry in both coastal and pelagic phytoplankton assemblages. Regarding inorganic carbon uptake kinetics, the measured maximum short-term uptake rates (Vmax(CO2)) and apparent half-saturation constants (K1/2(CO2)) did not differ between offshore and inshore phytoplankton. Moreover, Vmax(CO2) and K1/2(CO2) did not exhibit any CO2-dependent trend over the natural pCO2 range from 237 to 507 µatm. K1/2(CO2) strongly varied among the sampled phytoplankton communities, ranging between 3.5 and 35.3 µmol/L CO2. While in many of the sampled phytoplankton communities, the operation of carbon-concentrating mechanisms (CCMs) was indicated by low K1/2(CO2) values relative to ambient CO2 concentrations, some coastal sites exhibited higher values, suggesting down-regulated CCMs. Overall, our results demonstrate a complex interplay between photophysiological processes, iron and carbon uptake of phytoplankton communities of the WAP and the Drake Passage.
Resumo:
Processes of founding and expanding cities in coastal areas have undergone great changes over time driven by environmental conditions. Coastal settlements looked for places above flood levels and away from swamps and other wetlands whenever possible. As populations grew, cities were extending trying to avoid low and wet lands. No city has been able to limit its growth. The risk of flooding can never be eliminated, but only reduced to the extent possible. Flooding of coastal areas is today dramatically attributed to eustasic sea level rise caused by global climate change. This can be inaccurate. Current climate change is generating an average sea level upward trend, but other regional and local factors result in this trend being accentuated in some places or attenuated, and even reversed, in others. Then, the intensity and frequency of coastal flooding around the planet, although not so much as a unique result of this general eustasic elevation, but rather of the superposition of marine and crustal dynamic elements, the former also climate-related, which give rise to a temporary raising in average sea level in the short term. Since the Little Ice Age the planet has been suffering a global warming change leading to sea level rise. The idea of being too obeying to anthropogenic factors may be attributed to Arrhenius (1896), though it is of much later highlight after the sixties of the last century. Never before, the human factor had been able of such an influence on climate. However, other types of changes in sea levels became apparent, resulting from vertical movements of the crust, modifications of sea basins due to continents fracturing, drifting and coming together, or to different types of climate patterns. Coastal zones are then doubly susceptible to floods. Precipitation immediately triggers pluvial flooding. If it continues upland or when snow and glaciers melt eventually fluvial flooding can occur. The urban development presence represents modifying factors. Additional interference is caused by river and waste water drainage systems. Climate also influences sea levels in coastal areas, where tides as well as the structure and dynamic of the geoid and its crust come into play. From the sea, waters can flood and break or push back berms and other coastline borders. The sea level, controlling the mouth of the main channel of the basin's drainage system, is ultimately what governs flood levels. A temporary rise in sea level acts as a dam at the mouth. Even in absence of that global change, so, floods are likely going to increase in many urban coastal areas. Some kind of innovative methodologies and practices should be needed to get more flood resilience cities
Resumo:
Remote sensed imagery acquired with mini aerial vehicles, in conjunction with GIS technology enable a meticulous analysis from surveyed agricultural sites. This paper sums up the ongoing work in area discretization and coverage with mini quad-?rotors applied to Precision Agriculture practices under the project RHEA.