988 resultados para QQQQ(Q)OVER-BAR COMPONENTS
Resumo:
The influence of atmospheric aerosols on Earth's radiation budget and hence climate, though well recognized and extensively investigated in recent years, remains largely uncertain mainly because of the large spatio-temporal heterogeneity and the lack of data with adequate resolution. To characterize this diversity, a major multi-platform field campaign ICARB (Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out during the pre-monsoon period of 2006 over the Indian landmass and surrounding oceans, which was the biggest such campaign ever conducted over this region. Based on the extensive and concurrent measurements of the optical and physical properties of atmospheric aerosols during ICARB, the spatial distribution of aerosol radiative forcing was estimated over the entire Bay of Bengal (BoB), northern Indian Ocean and Arabian Sea (AS) as well as large spatial variations within these regions. Besides being considerably lower than the mean values reported earlier for this region, our studies have revealed large differences in the forcing components between the BoB and the AS. While the regionally averaged aerosol-induced atmospheric forcing efficiency was 31 +/- 6 W m(-2) tau(-1) for the BoB, it was only similar to 18 +/- 7 W m(-2) tau(-1) for the AS. Airborne measurements revealed the presence of strong, elevated aerosol layers even over the oceans, leading to vertical structures in the atmospheric forcing, resulting in significant warming in the lower troposphere. These observations suggest serious climate implications and raise issues ranging from the impact of aerosols on vertical thermal structure of the atmospheric and hence cloud formation processes to monsoon circulation.
Resumo:
The BeiDou system is the first global navigation satellite system in which all satellites transmit triple-frequency signals that can provide the positioning, navigation, and timing independently. A benefit of triple-frequency signals is that more useful combinations can be formed, including some extrawide-lane combinations whose ambiguities can generally be instantaneously fixed without distance restriction, although the narrow-lane ambiguity resolution (NL AR) still depends on the interreceiver distance or requires a long time to achieve. In this paper, we synthetically study decimeter and centimeter kinematic positioning using BeiDou triple-frequency signals. It starts with AR of two extrawide-lane signals based on the ionosphere-free or ionosphere-reduced geometry-free model. For decimeter positioning, one can immediately use two ambiguity-fixed extrawide-lane observations without pursuing NL AR. To achieve higher accuracy, NL AR is the necessary next step. Despite the fact that long-baseline NL AR is still challenging, some NL ambiguities can indeed be fixed with high reliability. Partial AR for NL signals is acceptable, because as long as some ambiguities for NL signals are fixed, positioning accuracy will be certainly improved.With accumulation of observations, more and more NL ambiguities are fixed and the positioning accuracy continues to improve. An efficient Kalman-filtering system is established to implement the whole process. The formulated system is flexible, since the additional constraints can be easily applied to enhance the model's strength. Numerical results from a set of real triple-frequency BeiDou data on a 50 km baseline show that decimeter positioning is achievable instantaneously.With only five data epochs, 84% of NL ambiguities can be fixed so that the real-time kinematic accuracies are 4.5, 2.5, and 16 cm for north, east, and height components (respectively), while with 10 data epochs more than 90% of NL ambiguities are fixed, and the rea- -time kinematic solutions are improved to centimeter level for all three coordinate components.
Resumo:
Objective While driveway run-over incidents continue to be a cause of serious injury and deaths among young children in Australia, few empirically evaluated educational interventions have been developed which address these incidents. Addressing this gap, this study describes the development and evaluation of a paper-based driveway safety intervention targeting caregivers of children aged 5 years or younger. Design Cross-sectional survey. Method and setting Informed by previous research, the intervention targeted key caregiver safety behaviours that address driveway risks. To assess the impact of the intervention, 137 Queensland (Australia) caregivers (95.0% women; mean age = 34.97 years) were recruited. After receiving the intervention, changes to a number of outcomes such as caregiver risk perception, safety knowledge and behavioural intentions were measured. Results Findings indicated that the intervention had increased general and specific situational risk awareness and safety knowledge among a substantial proportion of participants. Close to one-quarter of the sample strongly agreed that the intervention had increased these outcomes. In addition, 71.6% of the sample reported that they intended to make changes to their routine in and around the driveway, as a result of reading the intervention material and a further, quarter of the participants strongly agreed that the information provided would be a help both to themselves (26.5%) and other caregivers (33.8%) to keep their children safe in the driveway. Conclusion: While the educational intervention requires further validation, findings from this study suggest that intervention content and format increases driveway safety.
Resumo:
We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66M_{ee}
Resumo:
Wear studies of engine components of high-speed diesel engines running under various operating conditions are presented. Tests were conducted under controlled conditions over long periods. The results of the various tests are discussed and attempts have been made to examine the effects of engine operating variables and the quality of the lubricating oil on the wear of engine components.
Resumo:
The unsteady laminar incompressible three-dimensional boundary layer flow and heat transfer on a flat plate with an attached cylinder have been studied when the free stream velocity components and wall temperature vary inversely as linear and quadratic functions of time, respectively. The governing semisimilar partial differential equations with three independent variables have been solved numerically using a quasilinear finite-difference scheme. The results indicate that the skin friction increases with parameter ? which characterizes the unsteadiness in the free stream velocity and the streamwise distance Image , but the heat transfer decreases. However, the skin friction and heat transfer are found to change little along Image . The effect of the Prandtl number on the heat transfer is found to be more pronounced when ? is small, whereas the effect of the dissipation parameter is more pronounced when ? is comparatively large.
Resumo:
The habit of "drinking smoke" , meaning tobacco smoking, caused a true controversy in early modern England. The new substance was used both for its alleged therapeutic properties as well as its narcotic effects. The dispute over tobacco continues the line of written controversies which were an important means of communication in the sixteenth and seventeenth century Europe. The tobacco controversy is special among medical controversies because the recreational use of tobacco soon spread and outweighed its medicinal use, ultimately causing a social and cultural crisis in England. This study examines how language is used in polemic discourse and argumentation. The material consists of medical texts arguing for and against tobacco in early modern England. The texts were compiled into an electronic corpus of tobacco texts (1577 1670) representing different genres and styles of writing. With the help of the corpus, the tobacco controversy is described and analyzed in the context of early modern medicine. A variety of methods suitable for the study of conflict discourse were used to assess internal and external text variation. The linguistic features examined include personal pronouns, intertextuality, structural components, and statistically derived keywords. A common thread in the work is persuasive language use manifested, for example, in the form of emotive adjectives and the generic use of pronouns; the latter is especially pronounced in the dichotomy between us and them. Controversies have not been studied in this manner before but the methods applied have supplemented each other and proven their suitability in the study of conflictive discourse. These methods can also be applied to present-day materials.
Resumo:
An investigation of the initiation and growth of erosion and of the effect of velocity and pressure on erosion in a rotating disk is presented. Also, the role of an intervening noncavitating period on erosion is studied. The results indicate that at high intensities the peak rate of erosion decreases with increases in pressure. The erosion rate/time curves obtained for metallic materials are explained by the eroded particle distribution and the cavity size. The average size of the eroded particles decreased when pressure and tensile strength of the material were increased. The erosion rate peaked after an intervening noncavitating period. The use of the rate of erosion, defined as an average over the entire test duration, in the equation governing the theory of erosion resulted in reasonably good correlations. The correlations reveal that it is possible to predict the length, width, and area of a cavity when the cavitation parameter σ is known. The normalized width of a cavity may be estimated if its normalized length is known.
Resumo:
The problem of quantification of intelligence of humans, and of intelligent systems, has been a challenging and controversial topic. IQ tests have been traditionally used to quantify human intelligence based on results of test designed by psychologists. It is in general very difficult to quantify intelligence. In this paper the authors consider a simple question-answering (Q-A) system and use this to quantify intelligence. The authors quantify intelligence as a vector with three components. The components consist of a measure of knowledge in asking questions, effectiveness of questions asked, and correctness of deduction. The authors formalize these parameters and have conducted experiments on humans to measure these parameters
Resumo:
Transpiration cooling over a flat plate at hypersonic Mach numbers is analyzed using Navier-Stokes equations, without the assumption of an isothermal wall with a prescribed wall temperature. A new criterion is proposed for determining a relevant range of blowing rates, which is useful in the parametric analysis. The wall temperature is found to decrease with the increasing blowing rate, but this effect is not uniform along the plate. The effect is more pronounced away from the leading edge. The relative change in the wall temperature is affected stronger by blowing at high Reynolds numbers. (AIAA)
Resumo:
This paper describes the results of the measurement of the Marine Boundary Layer (MBL) height from spectral analysis of the u and v components of the wind and from CLASS/radiosonde temperature profiles. The data were collected on ORV Sagar Kanya during the pre-INDOEX (27 December 1996 through 31 January 1997) and FFP-98 (18 February to 31 March 1998) over the latitude range 15 degrees N to 14 degrees S and 15 degrees N to 20 degrees S respectively. During the pre-INDOEX, the MBL heights gradually decrease from 2.5 km at 13 degrees N to around 500 to 600 m at 10 degrees S, Similar results are observed in the return track. The MBL heights (0.5 to 1 km) obtained during FFP-98 are less compared to those obtained during pre-INDOEX. The MBL heights during FFP-98 are less compared to the pre-INDOEX and are believed to be due to the presence of stratus, stratocumulus and cumulus clouds during the cruise period, compared to a relatively cloud free pre-INDOEX cruise.
Resumo:
We study linear and nonlinear optical properties of two push-pull polyenes stacked in head to head (HtH) and head to tail (HtT) configurations, at different stacking angles within the Pariser-Parr-Pople model using exact diagonalization method. By varying the stacking angle between the polyenes, we find that the optical gap varies marginally, but transition dipoles show large variations. We find that the dominant first-order hyperpolarizability component beta(XXX) for HtH arrangement and beta(YYY) for HtT arrangement strongly depend on the distance of separation between molecules, while the other smaller component beta(XYY) for HtH arrangement and beta(XXY) for HtT arrangement) does not show this variation with distance. We find that the beta(XXX) for HtH configuration shows a maximum at an angle away from 0, in contrast with the oriented gas model. This angle varies with distance between the polyenes, and at large distance it falls to 0. The ratio of all components of beta of a dimer to monomer is less than two for HtH configuration for all angles. But for HtT configurations the ratio of the dominant beta component is greater than two at large angles. Our ZINDO study on two monomers (4-hydroxy-4'-nitroazobenzene) connected in a nonconjugative fashion shows a linear increase in vertical bar(beta) over right arrow (av)vertical bar without much red shift in optical gap. There is a linear increase in vertical bar(beta) over right arrow (av)vertical bar with increase in number of monomers connected nonconjugatively without resulting in a red shift in optical gap.
Resumo:
The unsteady rotating flow of a laminar incompressible viscous electrically conducting fluid over a rotating sphere in the vicinity of the equator has been studied. The fluid and the body rotate either in the same direction or in opposite directions. The effects of surface suction and magnetic field have been included in the analysis. There is an initial steady state that is perturbed by a sudden change in the rotational velocity of the sphere, and this causes unsteadiness in the flow field. The nonlinear coupled parabolic partial differential equations governing the boundary-layer flow have been solved numerically by using an implicit finite-difference scheme. For large suction or magnetic field, analytical solutions have also been obtained. The magnitude of the radial, meridional and rotational velocity components is found to be higher when the fluid and the body rotate in opposite directions than when they rotate in the same direction. The surface shear stresses in the meridional and rotational directions change sign when the ratio of the angular velocities of the sphere and the fluid lambda greater than or equal to lambda(0). The final (new) steady state is reached rather quickly which implies that the spin-up time is small. The magnetic field and surface suction reduce the meridional shear stress, but increase the surface shear stress in the rotational direction.
Resumo:
Motivated by the need to statically balance the inherent elastic forces in linkages, this paper presents three techniques to statically balance a four-bar linkage loaded by a zero-free-length spring attached between its coupler point and an anchor point on the ground. The number of auxiliary links and balancing springs required for the three techniques is less than or equal to that of the only technique currently in the literature. One of the three techniques does not require auxiliary links. In these techniques, the set of values for the spring constants and the ground-anchor point of the balancing springs can vary over a one-parameter family. Thrice as many balancing choices are available when the cognates are considered. The ensuing numerous options enable a user to choose the most practical solution. To facilitate the evaluation of the balancing choices for all the cognates, Roberts-Chebyshev cognate theorem is extended to statically balanced four-bar linkages. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Wavelength-division multiplexing (WDM) technology, by which multiple optical channels can be simultaneously transmitted at different wavelengths through a single optical fiber, is a useful means of making full use of the low-loss characteristics of optical fibers over a wide-wavelength region. The present day multifunction RADARs with multiple transmit receive modules requires various kinds of signal distribution for real time operation. If the signal distribution can be achieved through optical networks by using Wavelength Division Multiplexing (WDM) methods, it results in a distribution scheme with less hardware complexity and leads to the reduction in the weight of the antenna arrays In addition, being an Optical network it is free from Electromagnetic interference which is a crucial requirement in an array environment. This paper discusses about the analysis performed on various WDM components of distribution optical network for radar applications. The analysis is performed by considering the feasible constant gain regions of Erbium doped fiber amplifier (EDFA) in Matlab environment. This will help the user in the selection of suitable components for WDM based optical distribution networks.