971 resultados para Pyramidal Tracts
Resumo:
Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.
Resumo:
CASE PRESENTATION: A substance abusing G2P1 mother spontaneously delivered at term an appropriate for gestational age girl. Neonatal seizures appeared at 21 hours and empiric anticonvulsive and antimicrobial treatment was started. At 25 hours, first vesicles appeared. While routine evaluations remained normal, a head CT revealed multifocal ischemic injuries, and a later MRI showed multifocal petechiae and diffusion abnormalities in the corticospinal tracts. The clinical diagnosis of incontinentia pigmenti (stage 1) was secured by histopathology. Follow-up at 13 months showed global developmental delay. DISCUSSION: We discuss the unusually early bilateral, fronto-occipital corticomedullar ischemias (CT day 3). On the MR imaging (day 7) extensive symmetric cerebral corticomedullar destruction and diffusion sequences with corticospinal tracts abnormalities are seen, which then evolve (day 26) to extensive symmetric cerebral destruction. We review the literature, genetics, suspected pathophysiology and possible neonatal manifestation. CONCLUSION: Incontinentia pigmenti is rare and, therefore, diagnosis is frequently delayed. Nevertheless, in the setting of therapy refractory seizures, excluded infections, and linear vesicular rash, a high index of suspicion is needed. This is the first report of simultaneous corticomedullar involvement as early as the third day of life.
Resumo:
Current concepts of synaptic fine-structure are derived from electron microscopic studies of tissue fixed by chemical fixation using aldehydes. However, chemical fixation with glutaraldehyde and paraformaldehyde and subsequent dehydration in ethanol result in uncontrolled tissue shrinkage. While electron microscopy allows for the unequivocal identification of synaptic contacts, it cannot be used for real-time analysis of structural changes at synapses. For the latter purpose advanced fluorescence microscopy techniques are to be applied which, however, do not allow for the identification of synaptic contacts. Here, two approaches are described that may overcome, at least in part, some of these drawbacks in the study of synapses. By focusing on a characteristic, easily identifiable synapse, the mossy fiber synapse in the hippocampus, we first describe high-pressure freezing of fresh tissue as a method that may be applied to study subtle changes in synaptic ultrastructure associated with functional synaptic plasticity. Next, we propose to label presynaptic mossy fiber terminals and postsynaptic complex spines on CA3 pyramidal neurons by different fluorescent dyes to allow for the real-time monitoring of these synapses in living tissue over extended periods of time. We expect these approaches to lead to new insights into the structure and function of central synapses.
Resumo:
OBJECTIVE: The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. STUDY DESIGN: Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. RESULTS: The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. CONCLUSIONS: The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.
Resumo:
The Michigan Basin is located in the upper Midwest region of the United States and is centered geographically over the Lower Peninsula of Michigan. It is filled primarily with Paleozoic carbonates and clastics, overlying Precambrian basement rocks and covered by Pleistocene glacial drift. In Michigan, more than 46,000 wells have been drilled in the basin, many producing significant quantities of oil and gas since the 1920s in addition to providing a wealth of data for subsurface visualization. Well log tomography, formerly log-curve amplitude slicing, is a visualization method recently developed at Michigan Technological University to correlate subsurface data by utilizing the high vertical resolution of well log curves. The well log tomography method was first successfully applied to the Middle Devonian Traverse Group within the Michigan Basin using gamma ray log curves. The purpose of this study is to prepare a digital data set for the Middle Devonian Dundee and Rogers City Limestones, apply the well log tomography method to this data and from this application, interpret paleogeographic trends in the natural radioactivity. Both the Dundee and Rogers City intervals directly underlie the Traverse Group and combined are the most prolific reservoir within the Michigan Basin. Differences between this study and the Traverse Group include increased well control and “slicing” of a more uniform lithology. Gamma ray log curves for the Dundee and Rogers City Limestones were obtained from 295 vertical wells distributed over the Lower Peninsula of Michigan, converted to Log ASCII Standard files, and input into the well log tomography program. The “slicing” contour results indicate that during the formation of the Dundee and Rogers City intervals, carbonates and evaporites with low natural radioactive signatures on gamma ray logs were deposited. This contrasts the higher gamma ray amplitudes from siliciclastic deltas that cyclically entered the basin during Traverse Group deposition. Additionally, a subtle north-south, low natural radioactive trend in the center of the basin may correlate with previously published Dundee facies tracts. Prominent trends associated with the distribution of limestone and dolomite are not observed because the regional range of gamma ray values for both carbonates are equivalent in the Michigan Basin and additional log curves are needed to separate these lithologies.
Resumo:
Urinary diversion after cystectomy have evolved from simple diversion and protection of the upper tracts to functional and anatomic restoration as close as possible to the natural preoperative state. Over the past 15 years, orthotopic reconstruction has evolved from "experimental surgery" to the "preferred method of urinary diversion" in both sexes. Urologist that perform this technique should have an appropriate experience with pelvic surgery and be able to perform a nerve sparing radical cystectomy. Nevertheless, the postoperative management of these patients is more important than the surgical construction if good longterm results are to be achieved. For this reason, a great knowledge about the neobladder's physiology, postoperative complications and their treatment are needed. We review the most important aspects in the postoperative management of patients with ileal neobladder. We also resume the long term outcomes concerning to continence, sexual function, renal impairment, oncologic safety and quality of life.
Resumo:
It is a popular concept in clinical neurology that muscles of the lower face receive predominantly crossed cortico-bulbar motor input, whereas muscles of the upper face receive additional ipsilateral, uncrossed input. To test this notion, we used focal transcranial magnetic brain stimulation to quantify crossed and uncrossed cortico-muscular projections to 6 different facial muscles (right and left Mm. frontalis, nasalis, and orbicularis oris) in 36 healthy right-handed volunteers (15 men, 21 women, mean age 25 years). Uncrossed input was present in 78% to 92% of the 6 examined muscles. The mean uncrossed: crossed response amplitude ratios were 0.74/0.65 in right/left frontalis, 0.73/0.59 in nasalis, and 0.54/0.71 in orbicularis oris; ANOVA p>0.05). Judged by the sizes of motor evoked potentials, the cortical representation of the 3 muscles was similar. The amount of uncrossed projections was different between men and women, since men had stronger left-to-left projections and women stronger right-to-right projections. We conclude that the amount of uncrossed pyramidal projections is not different for muscles of the upper from those of the lower face. The clinical observation that frontal muscles are often spared in central facial palsies must, therefore, be explained differently. Moreover, gender specific lateralization phenomena may not only be present for higher level behavioural functions, but may also affect simple systems on a lower level of motor hierarchy.
Resumo:
The patent nasopalatine duct is a rare anomaly in the anterior maxilla. During the early fetal period, a bilateral and epithelium-lined duct is formed within the primary palatal process as an oro-nasal communication. However, the duct obliterates and degenerates before birth. A persisting patent or through-and-through nasoplatine duct is therefore considered a developmental anomaly. A patent nasopalatine duct normally presents as one (or two) tiny openings lateral or posterior to the incisive papilla. In such a case, the ducts can be partially or completely probed with gutta-percha points with subsequent radiographic imaging. The patients report strange sensations such as squeaking noise, palatal drainage, nasal regurgitation, or airway communication between nasal and oral cavities; however, patients rarely complain about pain. About 40 cases have been documented in the literature. We describe two patients who have been referred to our department for evaluation of "sinus tracts" in the anterior palate. Since a patent nasopalatine duct can become a diagnostic pitfall, a thorough inspection of the mucosa around the incisive papilla is essential to avoid unnecessary endodontic or surgical interventions in the area of the central maxillary incisors.
Resumo:
Patients suffering from Parkinson's disease frequently complain of dizziness, postural instability and falls. Vestibular tests have been performed in 30 parkinsonian patients and in 28 controls. The results suggest a central vestibular disturbance in Parkinson's disease which correlates with the clinical disability. This vestibular disturbance is assumed to be due to dysfunction of the nigro-striato-collicular tracts.
Resumo:
Actinobacillus suis-like organisms (ASLOs) have been isolated from the genital, respiratory, and digestive tracts of healthy adult horses, horses with respiratory disease, and septic foals. Two foals with congenital hypothyroidism-dysmaturity syndrome from separate farms developed ASLO infection. At necropsy, both had contracted carpal flexor tendons, thyroid hyperplasia, and thrombotic and necrotizing mesenteric lymphangitis and lymphadenitis; one foal also had mandibular prognathism. Numerous ASLOs were isolated from tissues from both foals, including intestine. Biochemical testing and mass spectrometric analysis of the two Actinobacillus isolates did not allow unequivocal identification. Comparative genetic analysis was done on these and similar isolates, including phylogeny based on 16S rRNA, rpoB and recN genes, as well as RTX (repeat in toxin) toxin typing of apxIA-apxIVA and aqxA genes. One isolate was identified as Actinobacillus suis sensu stricto, based on the presence of apxIA and apxIIA but not aqxA, whereas the other isolate had aqxA but neither apxIA nor apxIIA, consistent with A equuli ssp haemolyticus. Based on genotypic analysis of the isolates included for comparison, 3 of 3 equine ASLOs and 2 of 5 A equuli isolates were reclassified as A equuli subsp haemolyticus, emphasizing the importance of toxin genotyping in accurate classification of actinobacilli.
Resumo:
The aim of this study was to improve the definition and identification of a group of veterinarily important bacteria referred to as the [Pasteurella] aerogenes-[Pasteurella] mairii-[Actinobacillus] rossii complex. These organisms have mainly been isolated from the reproductive and intestinal tracts of pigs and in most cases have been considered as opportunistic pathogens. A collection of 87 strains were characterized by phenotypic analysis from which 41 strains were selected for 16S rRNA gene sequence comparison, out of which 23 have been sequenced in the present study. One group of 21 strains phenotyped as biovars 1, 3-5, 9-11, 19 and 25-27, including the type strain of [P.] aerogenes, showed 16S rRNA gene sequence similarities of 99.6 % or higher; another group of 18 strains including biovars 2, 6-8, 12-15, 21, 23, 24 and 26A and the type strain of [A.] rossii showed 97.8 % or higher 16S rRNA gene sequence similarity. Between the two groups, 93.8-95.7 % 16S rRNA gene sequence similarity was observed. Strains of [P.] mairii showed 99.5 % similarity, with 95.5-97.2 and 93.8-95.5 % similarity to strains of [P.] aerogenes and [A.] rossii, respectively. Four strains could not be classified with any of these groups and belonged to other members of Pasteurellaceae. Comparisons were also made to DNA-DNA hybridization data. Biovars 1, 9, 10, 11 and 19, including the type strain of [P.] aerogenes, linked at 70 % DNA reassociation, whereas strains identified as biovars 2, 6, 7, 8, 12, 15 and 21 of [P.] aerogenes linked at 81 %. The latter group most likely represents [A.] rossii based on the 16S rRNA gene sequence comparisons. DNA reassociation between the [P.] aerogenes and [A.] rossii groups was at most 37 %, whereas 47 % was the highest DNA reassociation found between [P.] aerogenes and [P.] mairii. The study showed that [P.] aerogenes, [P.] mairii and [A.] rossii can not be easily separated and may consequently be misidentified based on current knowledge of their phenotypic characteristics. In addition, these taxa are difficult to separate from other taxa of the Pasteurellaceae. A revised scheme for separation based upon phenotypic characters is suggested for the three species [P.] aerogenes emend., [P.] mairii emend. and [A.] rossii emend., with the respective type strains ATCC 27883T, NCTC 10699T and ATCC 27072T.
Resumo:
BACKGROUND: The origin of auditory hallucinations, which are one of the core symptoms of schizophrenia, is still a matter of debate. It has been hypothesized that alterations in connectivity between frontal and parietotemporal speech-related areas might contribute to the pathogenesis of auditory hallucinations. These networks are assumed to become dysfunctional during the generation and monitoring of inner speech. Magnetic resonance diffusion tensor imaging is a relatively new in vivo method to investigate the directionality of cortical white matter tracts. OBJECTIVE: To investigate, using diffusion tensor imaging, whether previously described abnormal activation patterns observed during auditory hallucinations relate to changes in structural interconnections between the frontal and parietotemporal speech-related areas. METHODS: A 1.5 T magnetic resonance scanner was used to acquire twelve 5-mm slices covering the Sylvian fissure. Fractional anisotropy was assessed in 13 patients prone to auditory hallucinations, in 13 patients without auditory hallucinations, and in 13 healthy control subjects. Structural magnetic resonance imaging was conducted in the same session. Based on an analysis of variance, areas with significantly different fractional anisotropy values between groups were selected for a confirmatory region of interest analysis. Additionally, descriptive voxel-based t tests between the groups were computed. RESULTS: In patients with hallucinations, we found significantly higher white matter directionality in the lateral parts of the temporoparietal section of the arcuate fasciculus and in parts of the anterior corpus callosum compared with control subjects and patients without hallucinations. Comparing patients with hallucinations with patients without hallucinations, we found significant differences most pronounced in the left hemispheric fiber tracts, including the cingulate bundle. CONCLUSION: Our findings suggest that during inner speech, the alterations of white matter fiber tracts in patients with frequent hallucinations lead to abnormal coactivation in regions related to the acoustical processing of external stimuli. This abnormal activation may account for the patients' inability to distinguish self-generated thoughts from external stimulation.
Resumo:
Ablation of ventricular tachycardia (VT) by conventional radiofrequency ablation can be impossible if the ventricular wall at the targeted ablation site is very thick, as for example the ventricular septum. We present a case of a patient with incessant, non-sustained slow VT originating from the septal part of the lower outflow tracts. Radiofrequency catheter ablation from both ventricles as well as from the anterior cardiac vein were not successful. Both high power radiofrequency ablation and bipolar radiofrequency ablation neither were successfull. Finally, ethanol ablation of the first septal perforator successfully terminated arrhythmia. We discuss the possibilities to overcome failed conventional radiofrequency VT ablation of a septal focus.
Resumo:
The aim of the study was to review the clinical and electrophysiological characteristics and results of radiofrequency catheter ablation in patients with multiple accessory pathways to compare them with those of patients with single accessory pathways. Electrophysiological study and radiofrequency catheter ablation were performed in 1010 consecutive cases with Wolff Parkinson White Syndrome. Presence of multiple accessory pathways was documented in 31 patients (3.1%); 30 had two, and 1 had three accessory pathways. Of the 63 accessory pathways, 42 were manifest and 21 concealed. Nine patients had Ebstein's anomaly associated with atrioventricular bypass tracts. The most common combination was right posteroseptal with right free wall bypass tracts (15 patients with 30 accessory pathways). Fifty-one of the sixty-three accessory pathways (81%) were ablated successfully without complications. The duration of the procedure was 100 +/- 58 min and the fluoroscopic time 40 +/- 17 min. A follow up of 5 +/- 3 years after ablation, demonstrated recurrences of six accessory pathways (9.5%). In conclusion, patients with multiple accessory pathways can be treated by radiofrequency ablation in only one session with a high success rate although slightly less than that in patients with a single accessory pathway (81% vs 93%, P<0.01).
Resumo:
Calmodulin (CaM) is a ubiquitous Ca(2+) buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca(2+)-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca(2+)-CaM-dependent enzymes: Ca(2+)/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca(2+) and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca(2+) ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca(2+) and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca(2+) signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca(2+)-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca(2+) channels, and to the microscopic injection rate of Ca(2+) ions. We also demonstrate that Ca(2+) saturation takes place via two different pathways depending on the Ca(2+) injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca(2+) sensors that can differentially transduce Ca(2+) influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca(2+)-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.