984 resultados para Pulse widths


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aunque se conocen muchos métodos precisos para medidas de humedad puntuales, hasta hace muy poco, no existían métodos in situ para la medida del contenido de humedad a escala de metros o de kilómetros, importantes cuando pensamos a nivel de cuenca hidrográfica. La fibra óptica ha sido muy utilizada en el área de las comunicaciones. Sin embargo, entre sus aplicaciones más recientes, destaca la de su uso para medir la temperatura incluso en grandes distancias (hasta 10 km) y con una alta frecuencia temporal, lo que ha abierto un amplio abanico de posibilidades muy importantes en el seguimiento medioambiental (Selker et al. 2006a; 2006b, Tyler et al. 2008; Westhoff et al., 2007; Freifeld et al., 2008). La precisión en la medida puede alcanzar ± 0,2ºC en una distancia de ± 25 cm. El método utilizado en los ensayos explicados en esta comunicación es el denominado “Distributed Fiber Optic Temperature Measurement” (medida distribuida de la temperatura con fibra óptica) o DFOT, que consiste en emitir un impulso óptico con láser y medir en el tiempo la señal reflejada en diferentes puntos de la fibra. Este método se ha utilizado en el estudio de filtraciones de minas abandonadas (Selker et al. 2006a) y en proyectos relacionados con el cambio climático, como en el estudio del deshielo en glaciares y balances hídricos en pequeñas cuencas (Selker et al. 2006b). Además, en medios porosos, se ha usado, con buenos resultados para la detección de rotura de diques en presas (Perzlmaier et al. 2004a y 2004b) y para la detección de entrada de agua en vertederos urbanos con cubierta vegetal (Weiss, 2003b). Imhoff et al. (2006) en su revisión de técnicas de medidas de contenido de agua en el suelo destaca el uso del “DFOT heat pulse method” (método DFOT del pulso de calor).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a pulse shaping and shortening technique for pulses generated from gain switched single mode semiconductor lasers, based on a Mach Zehnder interferometer with variable delay. The spectral and temporal characteristics of the pulses obtained with the proposed technique are investigated with numerical simulations. Experiments are performed with a Distributed Feedback laser and a Vertical Cavity Surface Emitting Laser, emitting at 1.5 µm, obtaining pulse duration reduction of 25-30%. The main asset of the proposed technique is that it can be applied to different devices and pulses, taking advantage of the flexibility of the gain switching technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an experimental study on the generation of high-peak-power short optical pulses from a fully integrated master-oscillator power-amplifier emitting at 1.5 μm. High-peak-power (2.7 W) optical pulses with short duration (100 ps) have been generated by gain switching the master oscillator under optimized driving conditions. The static and dynamic characteristics of the device have been studied as a function of the driving conditions. The ripples appearing in the power-current characteristics under cw conditions have been attributed to mode hopping between the master oscillator resonant mode and the Fabry-Perot modes of the entire device cavity. Although compound cavity effects have been evidenced to affect the static and dynamic performance of the device, we have demonstrated that trains of single-mode short optical pulses at gigahertz frequencies can be conveniently generated in these devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through the use of the Distributed Fiber Optic Temperature Measurement (DFOT) method, it is possible to measure the temperature in small intervals (on the order of centimeters) for long distances (on the order of kilometers) with a high temporal frequency and great accuracy. The heat pulse method consists of applying a known amount of heat to the soil and monitoring the temperature evolution, which is primarily dependent on the soil moisture content. The use of both methods, which is called the active heat pulse method with fiber optic temperature sensing (AHFO), allows accurate soil moisture content measurements. In order to experimentally study the wetting patterns, i.e. shape, size, and the water distribution, from a drip irrigation emitter, a soil column of 0.5 m of diameter and 0.6 m high was built. Inside the column, a fiber optic cable with a stainless steel sheath was placed forming three concentric helixes of diameters 0.2 m, 0.4 m and 0.6 m, leading to a 148 measurement point network. Before, during, and after the irrigation event, heat pulses were performed supplying electrical power of 20 W/m to the steel. The soil moisture content was measured with a capacitive sensor in one location at depths of 0.1 m, 0.2 m, 0.3 m and 0.4 m during the irrigation. It was also determined by the gravimetric method in several locations and depths before and right after the irrigation. The emitter bulb dimensions and shape evolution was satisfactorily measured during infiltration. Furthermore, some bulb's characteristics difficult to predict (e.g. preferential flow) were detected. The results point out that the AHFO is a useful tool to estimate the wetting pattern of drip irrigation emitters in soil columns and show a high potential for its use in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outline: • Introduction • Process Experimental Setup • Experimental Procedure • Experimental Results for Al2024-T351 and Ti6Al4V - Residual stresses - Tensile Strength - Fatigue Life • Discussion and Outlook - Prospects for technological applications of LSP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of unpolarized laser pulses shaping is reported. The basis of the method is the use of an hybrid optical bistable device with nematic liquid-crystals, similar to the one previously reported by us. A sample of the input light constrols, by an asymmetrical electronic comparator, a 1 x 2 electro-optical total switch. The output pulses are reshaped and maintain the same polarization properties as the input light. From triangular input light signals, symmetriacl and asymmetrical output pulses have been obtained. The minimum pulse width achieved was 0.1 msec. A representation of the output versus input light signals gives an hysteresys cycle in the asymmetrical case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report a new method of laser pulse shaping by the use of liquid crystals as non linear materials. The basis of this method is similar to the one reported by us for an hybrid optical bistable device, but with a different electronic circuitry and feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation of Fission Yield covariance data and application to Fission Pulse Decay Heat calculations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gender detection is a very important objective to improve efficiency in tasks as speech or speaker recognition, among others. Traditionally gender detection has been focused on fundamental frequency (f0) and cepstral features derived from voiced segments of speech. The methodology presented here consists in obtaining uncorrelated glottal and vocal tract components which are parameterized as mel-frequency coefficients. K-fold and cross-validation using QDA and GMM classifiers showed that better detection rates are reached when glottal source and vocal tract parameters are used in a gender-balanced database of running speech from 340 speakers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced optical modulation format polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of this format varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper we analyze the tolerance of PDM-QPSK to linear and nonlinear optical impairments: amplified spontaneous emission (ASE) noise, crosstalk, distortion by optical filtering, chromatic dispersion (CD), polarization mode dispersion (PMD) and fiber Kerr nonlinearities. RZ formats with a low duty cycle value reduce pulse-to-pulse interaction obtaining a higher tolerance to CD, PMD and intrachannel nonlinearities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear Fresnel collectors still present a large margin to improve efficiency. Solar fields of this kind installed until current time, both prototypes and commercial plants, are designed with widths and shifts of mirrors that are constant across the solar field. However, the physical processes that limit the width of the mirrors depend on their relative locations to the receiver; the same applies to shading and blocking effects, that oblige to have a minimum shift between mirrors. In this work such phenomena are studied analytically in order to obtain a coherent design, able to improve the efficiency with no increase in cost. A ray tracing simulation along one year has been carried out for a given design, obtaining a moderate increase in radiation collecting efficiency in comparison to conventional designs. Moreover, this analytic theory can guide future designs aiming at fully optimizing linear Fresnel collectors' performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first feasibility study of using dual-probe heated fiber optics with distributed temperature sensing to measure soil volumetric heat capacity and soil water content is presented. Although results using different combinations of cables demonstrate feasibility, further work is needed to gain accuracy, including a model to account for the finite dimension and the thermal influence of the probes. Implementation of the dual-probe heat-pulse (DPHP) approach for measurement of volumetric heat capacity (C) and water content (θ) with distributed temperature sensing heated fiber optic (FO) systems presents an unprecedented opportunity for environmental monitoring (e.g., simultaneous measurement at thousands of points). We applied uniform heat pulses along a FO cable and monitored the thermal response at adjacent cables. We tested the DPHP method in the laboratory using multiple FO cables at a range of spacings. The amplitude and phase shift in the heat signal with distance was found to be a function of the soil volumetric heat capacity. Estimations of C at a range of moisture contents (θ = 0.09– 0.34 m3 m−3) suggest the feasibility of measurement via responsiveness to the changes in θ, although we observed error with decreasing soil water contents (up to 26% at θ = 0.09 m3 m−3). Optimization will require further models to account for the finite radius and thermal influence of the FO cables. Although the results indicate that the method shows great promise, further study is needed to quantify the effects of soil type, cable spacing, and jacket configurations on accuracy.