977 resultados para Production scheduling.
Resumo:
A central scheduling problem in wireless communications is that of allocating resources to one of many mobile stations that have a common radio channel. Much attention has been given to the design of efficient and fair scheduling schemes that are centrally controlled by a base station (BS) whose decisions depend on the channel conditions reported by each mobile. The BS is the only entity taking decisions in this framework. The decisions are based on the reports of mobiles on their radio channel conditions. In this paper, we study the scheduling problem from a game-theoretic perspective in which some of the mobiles may be noncooperative or strategic, and may not necessarily report their true channel conditions. We model this situation as a signaling game and study its equilibria. We demonstrate that the only Perfect Bayesian Equilibria (PBE) of the signaling game are of the babbling type: the noncooperative mobiles send signals independent of their channel states, the BS simply ignores them, and allocates channels based only on the prior information on the channel statistics. We then propose various approaches to enforce truthful signaling of the radio channel conditions: a pricing approach, an approach based on some knowledge of the mobiles' policies, and an approach that replaces this knowledge by a stochastic approximations approach that combines estimation and control. We further identify other equilibria that involve non-truthful signaling.
Resumo:
The polarisation of top quarks produced in high energy processes can be a very sensitive probe of physics beyond the Standard Model. The kinematical distributions of the decay products of the top quark can provide clean information on the polarisation of the produced top and thus can probe new physics effects in the top quark sector. We study some of the recently proposed polarisation observables involving the decay products of the top quark in the context of H(-)t and Wt production. We show that the effect of the top polarisation on the decay lepton azimuthal angle distribution, studied recently for these processes at leading order in QCD, is robust with respect to the inclusion of next-to-leading order and parton shower corrections. We also consider the leptonic polar angle, as well as recently proposed energy-related distributions of the top decay products. We construct asymmetry parameters from these observables, which can be used to distinguish the new physics signal from the Wt background and discriminate between different values of tan beta and m(H)- in a general type II two-Higgs doublet model. Finally, we show that similar observables may be useful in separating a Standard Model Wt signal from the much larger QCD induced top pair production background.
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted flowtime, observed in automobile gear manufacturing. Specifically, the bottleneck operation of the pre-heat treatment stage of gear manufacturing process has been dealt with in scheduling. Many real-life scenarios like unequal release times, sequence dependent setup times, and machine eligibility restrictions have been considered. A mathematical model taking into account dynamic starting conditions has been proposed. The problem is derived to be NP-hard. To approach the problem, a few heuristic algorithms have been proposed. Based on planned computational experiments, the performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small-size problem instances and (b) in comparison with the estimated optimal solution for large-size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently yielding near-statistically estimated optimal solutions in a reasonable computational time.
Resumo:
Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5-12 g/m(2)/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.
Resumo:
In this paper, we determine packet scheduling policies for efficient power management in Energy Harvesting Sensors (EHS) which have to transmit packets of high and low priorities over a fading channel. We assume that incoming packets are stored in a buffer and the quality of service for a particular type of message is determined by the expected waiting time of packets of that type of message. The sensors are constrained to work with the energy that they garner from the environment. We derive transmit policies which minimize the sum of expected waiting times of the two types of messages, weighted by penalties. First, we show that for schemes with a constant rate of transmission, under a decoupling approximation, a form of truncated channel inversion is optimal. Using this result, we derive optimal solutions that minimize the weighted sum of the waiting times in the different queues.
Resumo:
We consider the speech production mechanism and the asso- ciated linear source-filter model. For voiced speech sounds in particular, the source/glottal excitation is modeled as a stream of impulses and the filter as a cascade of second-order resonators. We show that the process of sampling speech signals can be modeled as filtering a stream of Dirac impulses (a model for the excitation) with a kernel function (the vocal tract response),and then sampling uniformly. We show that the problem of esti- mating the excitation is equivalent to the problem of recovering a stream of Dirac impulses from samples of a filtered version. We present associated algorithms based on the annihilating filter and also make a comparison with the classical linear prediction technique, which is well known in speech analysis. Results on synthesized as well as natural speech data are presented.
Resumo:
MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.