935 resultados para Priority queue
Resumo:
Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.
Resumo:
Single step affinity chromatography was employed for the purification of plasmid DNA (pDNA), thus eliminating several steps compared with current commercial purification methods for pDNA. Significant reduction in pDNA production time and cost was obtained. This chromatographic operation employed a peptide-monolith construct to isolate pDNA from Escherichia coli (E. coli) impurities present in a clarified lysate feedstock. Mild conditions were applied to avoid any degradation of pDNA. The effect of some important parameters on pDNA yield was also evaluated with the aim of optimising the affinity purification of pDNA. The results demonstrate that 81% of pDNA was recovered and contaminating gDNA, RNA and protein were removed below detectable levels. © 2008 Elsevier B.V. All rights reserved.
Resumo:
The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 °C. Maximum radial temperature recorded at the centre of the monolith was 62.3 °C, which was only 2.3 °C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5α-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis.
Resumo:
A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 μm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.
Resumo:
High-throughput plasmid DNA (pDNA) manufacture is obstructed predominantly by the performance of conventional stationary phases. For this reason, the search for new materials for fast chromatographic separation of pDNA is ongoing. A poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GMA-EGDMA) monolithic material was synthesised via a thermal-free radical reaction, functionalised with different amino groups from urea, 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) and ammonia in order to investigate their plasmid adsorption capacities. Physical characterisation of the monolithic polymer showed a macroporous polymer having a unimodal pore size distribution pivoted at 600 nm. Chromatographic characterisation of the functionalised polymers using pUC19 plasmid isolated from E. coli DH5α-pUC19 showed a maximum plasmid adsorption capacity of 18.73 mg pDNA/mL with a dissociation constant (KD) of 0.11 mg/mL for GMA-EGDMA/DEAE-Cl polymer. Studies on ligand leaching and degradation demonstrated the stability of GMA-EGDMA/DEAE-Cl after the functionalised polymers were contacted with 1.0 M NaOH, which is a model reagent for most 'cleaning in place' (CIP) systems. However, it is the economic advantage of an adsorbent material that makes it so attractive for commercial purification purposes. Economic evaluation of the performance of the functionalised polymers on the grounds of polymer cost (PC)/mg pDNA retained endorsed the suitability of GMA-EGDMA/DEAE-Cl polymer.
Resumo:
The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.
Resumo:
In responding to future influenza pandemics and other infectious agents, plasmid DNA overcomes many of the limitations of conventional vaccine production approaches.
Resumo:
This thesis investigates the potential people capability factors that can influence the implementation of sustainability agenda in facility management practices. Twenty three critical factors were identified and separated into four categories of strategic, anticipatory, interpersonal and system thinking capabilities. An Interpretive structural model was then developed to explore the interrelationship and priority of each critical factor. A set of guidelines for action and potential effects of each people capability factor were presented for the industry to promote sustainability endeavour in facility management practices.
Resumo:
Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.
Resumo:
Vehicle speed is an important attribute for analysing the utility of a transport mode. The speed relationship between multiple modes of transport is of interest to traffic planners and operators. This paper quantifies the relationship between bus speed and average car speed by integrating Bluetooth data and Transit Signal Priority data from the urban network in Brisbane, Australia. The method proposed in this paper is the first of its kind to relate bus speed and average car speed by integrating multi-source traffic data in a corridor-based method. Three transferable regression models relating not-in-service bus, in-service bus during peak periods, and in-service bus during off-peak periods with average car speed are proposed. The models are cross-validated and the interrelationships are significant.
Resumo:
Successful biodiversity conservation requires safeguarding viable populations of species. To work with this challenge Sweden has introduced a concept of Action Plans, which focus on the recovery of one or more species; while keeping in mind the philosophy of addressing ecosystems in a more comprehensive way, following the umbrella concept. In this paper we investigate the implementationprocess of the ActionPlanfor one umbrella species, the White-backed Woodpecker (WBW) Dendrocopos leucotos. We describe the plan's organisation and goals, and investigate its implementation and accomplishment of particular targets, based on interviewing and surveying the key actors. The achievement of the targets in 2005-2008 was on average much lower than planned, explained partially by the lack of knowledge/data, experienced workers, and administrative flexibility. Surprisingly, the perceived importance of particular conservation measures, the investment priority accorded to them, the money available and various practical obstacles all failed to kg? explain the target levels achieved. However qualitative data from both the interviews and the survey highlight possible implementation obstacles: competing interests with other conservation actions and the level of engagement of particular implementing actors. Therefore we suggest that for successful implementation of recovery plans, there is aneed for initial and inclusive scoping prior to embarking on the plan, where not only issues like ecological knowledge and practical resources are considered, but also possible conflicts and synergies with other conservation actions. An adaptive approach with regular review of the conservation process is essential, particularly in the case of such complex action plans as the one for the WBW.
Resumo:
Stations on Bus Rapid Transit (BRT) lines ordinarily control line capacity because they act as bottlenecks. At stations with passing lanes, congestion may occur when buses maneuvering into and out of the platform stopping lane interfere with bus flow, or when a queue of buses forms upstream of the station blocking inflow. We contend that, as bus inflow to the station area approaches capacity, queuing will become excessive in a manner similar to operation of a minor movement on an unsignalized intersection. This analogy was used to treat BRT station operation and to analyze the relationship between station queuing and capacity. We conducted microscopic simulation to study and analyze operating characteristics of the station under near steady state conditions through output variables of capacity, degree of saturation and queuing. In the first of two stages, a mathematical model was developed for all stopping buses potential capacity with bus to bus interference and the model was validated. Secondly, a mathematical model was developed to estimate the relationship between average queue and degree of saturation and calibrated for a specified range of controlled scenarios of mean and coefficient of variation of dwell time.
Resumo:
Background The requirement for dual screening of titles and abstracts to select papers to examine in full text can create a huge workload, not least when the topic is complex and a broad search strategy is required, resulting in a large number of results. An automated system to reduce this burden, while still assuring high accuracy, has the potential to provide huge efficiency savings within the review process. Objectives To undertake a direct comparison of manual screening with a semi‐automated process (priority screening) using a machine classifier. The research is being carried out as part of the current update of a population‐level public health review. Methods Authors have hand selected studies for the review update, in duplicate, using the standard Cochrane Handbook methodology. A retrospective analysis, simulating a quasi‐‘active learning’ process (whereby a classifier is repeatedly trained based on ‘manually’ labelled data) will be completed, using different starting parameters. Tests will be carried out to see how far different training sets, and the size of the training set, affect the classification performance; i.e. what percentage of papers would need to be manually screened to locate 100% of those papers included as a result of the traditional manual method. Results From a search retrieval set of 9555 papers, authors excluded 9494 papers at title/abstract and 52 at full text, leaving 9 papers for inclusion in the review update. The ability of the machine classifier to reduce the percentage of papers that need to be manually screened to identify all the included studies, under different training conditions, will be reported. Conclusions The findings of this study will be presented along with an estimate of any efficiency gains for the author team if the screening process can be semi‐automated using text mining methodology, along with a discussion of the implications for text mining in screening papers within complex health reviews.
Resumo:
This thesis investigated the complexity of busway operation with stopping and non-stopping buses using field data and microscopic simulation modelling. The proposed approach made significant recommendations to transit authorities to achieve the most practicable system capacity for existing and new busways. The empirical equations developed in this research and newly introduced analysis methods will be ideal tools for transit planners to achieve optimal reliability of busways.
Resumo:
The early years are significant in optimising children’s educational, emotional and social outcomes and have become a major international policy priority. Within Australia, policy levers have prioritised early childhood education, with a focus on program quality, as it is associated with lifelong success. Longitudinal studies have found that high quality teacher-child interactions are an essential element of high quality programs, and teacher questioning is one aspect of teacher-child interactions that has been attributed to affecting the quality of education, linking open ended questioning to higher cognitive achievement. Teachers, however, overwhelmingly ask more closed than open questions. In the classroom, like everyday interaction, questions in interaction require answers. They are used to request, offer, repair, challenge, seek agreement (Curl & Drew, 2008; Enfield, Stivers, & Levinson, 2010; Hayano, 2013; Schegloff, 2007). Teachers use questions to set agendas and manage lessons (McHoul, 1978; Mehan, 1979; Sacks, 1995), and to gauge students’ knowledge and understanding (Lerner, 1995; McHoul, 1978; Mehan, 1979). Drawing on data from the Australian Research Council project Interacting with Knowledge: Interacting with people: Web searching in early childhood, this paper focuses on an extended sequence of talk between a teacher with two students aged between 3.5 and 5 years in a preschool classroom. The episode, drawn from a corpus of over 200 hours of video recorded data, captures how the teacher and children undertake an online search for images of lady beetles and hairy caterpillars on the Web. Ethnomethodological and conversation analysis approaches examine how the teacher asks questions, which call on the children to display their factual knowledge about the search topic. The fine grained analysis shows how teachers design their interactions to prompt children’s displays of factual knowledge, and how the design of factual questions affect a student’s response in terms of what and how they respond. In focussing on how the teacher designs factual questions and how children respond to these questions it shows that question design can close down a student’s reply; or elicit a range of answers, from one word to extended more detailed responses. Understanding how the design of teachers’ questions can influence students’ responses has pedagogic implications and may support educators to make intentional decisions regarding their own questioning techniques.