900 resultados para Precision timed machines
Resumo:
In this paper we explore the use of text-mining methods for the identification of the author of a text. We apply the support vector machine (SVM) to this problem, as it is able to cope with half a million of inputs it requires no feature selection and can process the frequency vector of all words of a text. We performed a number of experiments with texts from a German newspaper. With nearly perfect reliability the SVM was able to reject other authors and detected the target author in 60–80% of the cases. In a second experiment, we ignored nouns, verbs and adjectives and replaced them by grammatical tags and bigrams. This resulted in slightly reduced performance. Author detection with SVMs on full word forms was remarkably robust even if the author wrote about different topics.
Resumo:
Testing concurrent software is difficult due to problems with inherent nondeterminism. In previous work, we have presented a method and tool support for the testing of concurrent Java components. In this paper, we extend that work by presenting and discussing techniques for testing Java thread interrupts and timed waits. Testing thread interrupts is important because every Java component that calls wait must have code dealing with these interrupts. For a component that uses interrupts and timed waits to provide its basic functionality, the ability to test these features is clearly even more important. We discuss the application of the techniques and tool support to one such component, which is a nontrivial implementation of the readers-writers problem.
Resumo:
Traditionally, machine learning algorithms have been evaluated in applications where assumptions can be reliably made about class priors and/or misclassification costs. In this paper, we consider the case of imprecise environments, where little may be known about these factors and they may well vary significantly when the system is applied. Specifically, the use of precision-recall analysis is investigated and compared to the more well known performance measures such as error-rate and the receiver operating characteristic (ROC). We argue that while ROC analysis is invariant to variations in class priors, this invariance in fact hides an important factor of the evaluation in imprecise environments. Therefore, we develop a generalised precision-recall analysis methodology in which variation due to prior class probabilities is incorporated into a multi-way analysis of variance (ANOVA). The increased sensitivity and reliability of this approach is demonstrated in a remote sensing application.
Resumo:
This paper introduces a new technique in the investigation of limited-dependent variable models. This paper illustrates that variable precision rough set theory (VPRS), allied with the use of a modern method of classification, or discretisation of data, can out-perform the more standard approaches that are employed in economics, such as a probit model. These approaches and certain inductive decision tree methods are compared (through a Monte Carlo simulation approach) in the analysis of the decisions reached by the UK Monopolies and Mergers Committee. We show that, particularly in small samples, the VPRS model can improve on more traditional models, both in-sample, and particularly in out-of-sample prediction. A similar improvement in out-of-sample prediction over the decision tree methods is also shown.
Resumo:
This paper presents two hybrid genetic algorithms (HGAs) to optimize the component placement operation for the collect-and-place machines in printed circuit board (PCB) assembly. The component placement problem is to optimize (i) the assignment of components to a movable revolver head or assembly tour, (ii) the sequence of component placements on a stationary PCB in each tour, and (iii) the arrangement of component types to stationary feeders simultaneously. The objective of the problem is to minimize the total traveling time spent by the revolver head for assembling all components on the PCB. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method, the nearest neighbor heuristic, and the neighborhood frequency heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different population sizes. It is proved that the performance of HGA2 is superior to HGA1 in terms of the total assembly time.