869 resultados para Power Systems, Load Model, Indentification
Resumo:
Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.
Resumo:
Grid computing is an emerging technology for providing the high performance computing capability and collaboration mechanism for solving the collaborated and complex problems while using the existing resources. In this paper, a grid computing based framework is proposed for the probabilistic based power system reliability and security analysis. The suggested name of this computing grid is Reliability and Security Grid (RSA-Grid). Then the architecture of this grid is presented. A prototype system has been built for further development of grid-based services for power systems reliability and security assessment based on probabilistic techniques, which require high performance computing and large amount of memory. Preliminary results based on prototype of this grid show that RSA-Grid can provide the comprehensive assessment results for real power systems efficiently and economically.
Resumo:
We present a model for detection of the states of a coupled quantum dots (qubit) by a quantum point contact. Most proposals for measurements of states of quantum systems are idealized. However in a real laboratory the measurements cannot be perfect due to practical devices and circuits. The models using ideal devices are not sufficient for describing the detection information of the states of the quantum systems. Our model therefore includes the extension to a non-ideal measurement device case using an equivalent circuit. We derive a quantum trajectory that describes the stochastic evolution of the state of the system of the qubit and the measuring device. We calculate the noise power spectrum of tunnelling events in an ideal and a non-ideal quantum point contact measurement respectively. We found that, for the strong coupling case it is difficult to obtain information of the quantum processes in the qubit by measurements using a non-ideal quantum point contact. The noise spectra can also be used to estimate the limits of applicability of the ideal model.
Resumo:
Over a number of years, as the Higher Education Funding Council for England (HEFCE)'s funding models became more transparent, Aston University was able to discover how its funding for teaching and research was calculated. This enabled calculations to be made on the funds earned by each school in the University, and Aston Business School (ABS) in turn to develop models to calculate the funds earned by its programmes and academic groups. These models were a 'load' and a 'contribution' model. The 'load' model records the weighting of activities undertaken by individual members of staff; the 'contribution' model is the means by which funds are allocated to academic units. The 'contribution' model is informed by the 'load' model in determining the volume of activity for which each academic unit is to be funded.
Resumo:
Rolls-Royce fuel cell systems is developing megawatt scale power systems based on solid oxide fuel cell technology. The hybrid design promises to meet challenging energy efficiency, cost and performance targets in a grid friendly fashion. Analysis and testing to date indicate that those targets can be met and enable a wealth of fuel cell applications to meet customer and existing grid and modern grid requirements. Working with a global development team, a series of laboratory tests and evaluations are completed and future field test and evaluation and demonstration planned.
Resumo:
This research explores the links between the strategies adopted by companies and the mechanisms used to control the organisation. This is not seen as a one way process with the control system following from the strategy but rather as an interactive process between the control systems, the environment and the business strategy. The main proposition of the research, derived from a review of the relevant literature, is that the dimensions of Business Pro-Activity and Environmental Change provide a plausible explanation of the reasons why companies need to adopt different strategies in order to be successful in different markets. A model is proposed which links these dimensions with the business strategy, organisational structure, strategic planning system and management control systems. The model is used as a framework for analysing four companies in order to further our understanding of these interactions and the mechanisms which act to both promote and resist change. Whilst it is not suggested that the model in its present form is a perfect instrument it has, during the course of this research, proved to be an appropriate framework for analysing the various mechanisms used by four companies to formulate and implement their strategies. The research reveals that these should not be viewed independently but as a balanced system.
Resumo:
Multiple-antenna systems offer significant performance enhancement and will be applied to the next generation broadband wireless communications. This thesis presents the investigations of multiple-antenna systems – multiple-input multiple-output (MIMO) and cooperative communication (CC) – and their performances in more realistic propagation environments than those reported previously. For MIMO systems, the investigations are conducted via theoretical modelling and simulations in a double-scattering environment. The results show that the variations of system performances depend on how scatterer density varies in flat fading channels, and that in frequency-selective fading channels system performances are affected by the length of the coding block as well as scatterer density. In realistic propagation environments, the fading correlation also has an impact on CC systems where the antennas can be further apart than those in MIMO systems. A general stochastic model is applied to studying the effects of fading correlation on the performances of CC systems. This model reflects the asymmetry fact of the wireless channels in a CC system. The results demonstrate the varied effects of fading correlation under different protocols and channel conditions. Performances of CC systems are further studied at the packet level, using both simulations and an experimental testbed. The results obtained have verified various performance trade-offs of the cooperative relaying network (CRN) investigated in different propagation environments. The results suggest that a proper selection of the relaying algorithms and other techniques can meet the requirements of quality of service for different applications.
Resumo:
This paper discusses the use of a Model developed by Aston Business School to record the work load of its academic staff. By developing a database to register annual activity in all areas of teaching, administration and research the School has created a flexible tool which can be used for facilitating both day-to-day managerial and longer term strategic decisions. This paper gives a brief outline of the Model and discusses the factors which were taken into account when setting it up. Particular attention is paid to the uses made of the Model and the problems encountered in developing it. The paper concludes with an appraisal of the Model’s impact and of additional developments which are currently being considered. Aston Business School has had a Load Model in some form for many years. The Model has, however, been refined over the past five years, so that it has developed into a form which can be used for a far greater number of purposes within the School. The Model is coordinated by a small group of academic and administrative staff, chaired by the Head of the School. This group is responsible for the annual cycle of collecting and inputting data, validating returns, carrying out analyses of the raw data, and presenting the mater ial to different sections of the School. The authors of this paper are members of this steer ing group.
Resumo:
bCHP (Biomass combined heat and power) systems are highly efficient at smaller-scales when a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost fossil fuel incumbent. The paper reviews the barriers to small-scale bCHP project development in the UK along with a case study of a failed 1.5MWel bCHP scheme. The paper offers possible explanations for the project's failure and suggests adaptations to improve the project resilience. Analysis of the project's: capital structuring contract length and bankability; feedstock type and price uncertainty, and plant oversizing highlight the negative impact of the existing project barriers on project development. The research paper concludes with a discussion on the effects of these barriers on the case study project and this industry more generally. A greater understanding of the techno-economic effects of some barriers for small-scale bCHP schemes is demonstrated within this paper, along with some methods for improving the attractiveness and resilience of projects of this kind. © 2014 Elsevier Ltd.
Resumo:
Power system simulation software is a useful tool for teaching the fundamentals of power system design and operation. However, existing commercial packages are not ideal for teaching work-based students because of high-cost, complexity of the software and licensing restrictions. This paper describes a set of power systems libraries that have been developed for use with the free, student-edition of a Micro-Cap Spice that overcomes these problems. In addition, these libraries are easily adapted to include power electronic converter based components into the simulation, such as HVDC, FACTS and smart-grid devices, as well as advanced system control functions. These types of technology are set to become more widespread throughout existing power networks, and their inclusion into a power engineering degree course is therefore becoming increasingly important.
Resumo:
The ability of automatic graphic user interface construction is described. It is based on the building of user interface as reflection of the data domain logical definition. The submitted approach to development of the information system user interface enables dynamic adaptation of the system during their operation. This approach is used for creation of information systems based on CASE-system METAS.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results.
Resumo:
System efficiency and cost effectiveness are of critical importance for photovoltaic (PV) systems. This paper addresses the two issues by developing a novel three-port dc-dc converter for stand-alone PV systems, based on an improved Flyback-Forward topology. It provides a compact single-unit solution with a combined feature of optimized maximum power point tracking (MPPT), high step-up ratio, galvanic isolation, and multiple operating modes for domestic and aerospace applications. A theoretical analysis is conducted to analyze the operating modes followed by simulation and experimental work. This paper is focused on a comprehensive modulation strategy utilizing both PWM and phase-shifted control that satisfies the requirement of PV power systems to achieve MPPT and output voltage regulation. A 250-W converter was designed and prototyped to provide experimental verification in term of system integration and high conversion efficiency.