992 resultados para Potential Linkage
Resumo:
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (mu) of 0.28 day(-1) and biomass productivities of 132 mg L-1 day(-1). The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g L-1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.
Resumo:
Human La protein has been implicated in facilitating the internal initiation of translation as well as replication of hepatitis C virus (HCV) RNA. Previously, we demonstrated that La interacts with the HCV internal ribosome entry site (IRES) around the GCAC motif near the initiator AUG within stem-loop IV by its RNA recognition motif (RRM) (residues 112 to 184) and influences HCV translation. In this study, we have deciphered the role of this interaction in HCV replication in a hepatocellular carcinoma cell culture system. We incorporated mutation of the GCAC motif in an HCV monocistronic subgenomic replicon and a pJFH1 construct which altered the binding of La and checked HCV RNA replication by reverse transcriptase PCR (RT-PCR). The mutation drastically affected HCV replication. Furthermore, to address whether the decrease in replication is a consequence of translation inhibition or not, we incorporated the same mutation into a bicistronic replicon and observed a substantial decrease in HCV RNA levels. Interestingly, La overexpression rescued this inhibition of replication. More importantly, we observed that the mutation reduced the association between La and NS5B. The effect of the GCAC mutation on the translation-to-replication switch, which is regulated by the interplay between NS3 and La, was further investigated. Additionally, our analyses of point mutations in the GCAC motif revealed distinct roles of each nucleotide in HCV replication and translation. Finally, we showed that a specific interaction of the GCAC motif with human La protein is crucial for linking 5' and 3' ends of the HCV genome. Taken together, our results demonstrate the mechanism of regulation of HCV replication by interaction of the cis-acting element GCAC within the HCV IRES with human La protein.
Resumo:
The polyamidoamine (PAMAM) dendrimer prevents HIV-1 entry into target cells in vitro. Its mechanism of action, however, remains unclear and precludes the design of potent dendrimers targeting HIV-1 entry. We employed steered molecular dynamics simulations to examine whether the HIV-1 gp120-CD4 complex is a target of PAMAM. Our simulations mimicked single molecule force spectroscopy studies of the unbinding of the gp120-CD4 complex under the influence of a controlled external force. We found that the complex dissociates via complex pathways and defies the standard classification of adhesion molecules as catch and slip bonds. When the force loading rate was large, the complex behaved as a slip bond, weakening gradually. When the loading rate was small, the complex initially strengthened, akin to a catch bond, but eventually dissociated over shorter separations than with large loading rates. PAMAM docked to gp120 and destabilized the gp120-CD4 complex. The rupture force of the complex was lowered by PAMAM. PAMAM disrupted salt bridges and hydrogen bonds across the gp120-CD4 interface and altered the hydration pattern of the hydrophobic cavity in the interface. In addition, intriguingly, PAMAM suppressed the distinction in the dissociation pathways of the complex between the small and large loading rate regimes. Taken together, our simulations reveal that PAMAM targets the gp120-CD4 complex at two levels: it weakens the complex and also alters its dissociation pathway, potentially inhibiting HIV-1 entry.
Resumo:
Extending the previous work of Lan et al. J. Chem. Phys., 122, 224315 (2005)], a multi-state potential model for the H atom photodissociation is presented. All three ``disappearing coordinates'' of the departing H atom have been considered. Ab initio CASSCF computations have been carried out for the linear COH geometry of C-2v symmetry, and for several COH angles with the OH group in the ring plane and also perpendicular to the ring plane. By keeping the C6H5O fragment frozen in a C-2v-constrained geometry throughout, we have been able to apply symmetry-based simplifications in the constructions of a diabatic model. This model is able to capture the overall trends of twelve adiabats at both torsional limits for a wide range of COH bend angles.
Resumo:
Residue depth accurately measures burial and parameterizes local protein environment. Depth is the distance of any atom/residue to the closest bulk water. We consider the non-bulk waters to occupy cavities, whose volumes are determined using a Voronoi procedure. Our estimation of cavity sizes is statistically superior to estimates made by CASTp and VOIDOO, and on par with McVol over a data set of 40 cavities. Our calculated cavity volumes correlated best with the experimentally determined destabilization of 34 mutants from five proteins. Some of the cavities identified are capable of binding small molecule ligands. In this study, we have enhanced our depth-based predictions of binding sites by including evolutionary information. We have demonstrated that on a database (LigASite) of similar to 200 proteins, we perform on par with ConCavity and better than MetaPocket 2.0. Our predictions, while less sensitive, are more specific and precise. Finally, we use depth (and other features) to predict pK(a)s of GLU, ASP, LYS and HIS residues. Our results produce an average error of just <1 pH unit over 60 predictions. Our simple empirical method is statistically on par with two and superior to three other methods while inferior to only one. The DEPTH server (http://mspc.bii.a-star.edu.sg/depth/) is an ideal tool for rapid yet accurate structural analyses of protein structures.
Resumo:
Boswellia papyrifera and Boswellia carterii, known as Arabian incense, diffuses smoke, contaminating the air, which adversely affects human health. Therefore, this study was designed to ascertain the effect of these plants on histopathological and ultrastructure changes in cauda epididymis of Albino rats. Animals were exposed to 4 g/kg body weight of B. papyrifera and B. carterii daily for 120 days along with suitable controls. Our study indicates a significant reduction in epithelial heights. Cells showed signs of degeneration. The ultrastructural study revealed that the cauda epididymis was affected, including its cell types. Furthermore, a decrease in the size of mitochondria, Golgi complex, and both ERs was observed. In all treated groups, plasma fructose decreased considerably, indicating the sign of reduced energy, vital for motility and other sperm functions. The results of this study suggest that these plants systematically affect cauda epididymal cell types and its lumen through its potential toxicity. (C) 2013 Published by Elsevier Masson SAS on behalf of Academie des sciences.
Resumo:
We present a comprehensive study of two of the most experimentally relevant extensions of Kitaev's spinless model of a one-dimensional p-wave superconductor: those involving (i) longer-range hopping and superconductivity and (ii) inhomogeneous potentials. We commence with a pedagogical review of the spinless model and, as a means of characterizing topological phases exhibited by the systems studied here, we introduce bulk topological invariants as well as those derived from an explicit consideration of boundary modes. In time-reversal symmetric systems, we find that the longer range hopping leads to topological phases characterized by multiple Majorana modes. In particular, we investigate a spin model that respects a duality and maps to a fermionic model with multiple Majorana modes; we highlight the connection between these topological phases and the broken symmetry phases in the original spin model. In the presence of time-reversal symmetry breaking terms, we show that the topological phase diagram is characterized by an extended gapless regime. For the case of inhomogeneous potentials, we explore phase diagrams of periodic, quasiperiodic, and disordered systems. We present a detailed mapping between normal state localization properties of such systems and the topological phases of the corresponding superconducting systems. This powerful tool allows us to leverage the analyses of Hofstadter's butterfly and the vast literature on Anderson localization to the question of Majorana modes in superconducting quasiperiodic and disordered systems, respectively. We briefly touch upon the synergistic effects that can be expected in cases where long-range hopping and disorder are both present.
Resumo:
Detailed analysis of alternating current impedance data of LiMn2O4 electrodes measured at several temperatures and potentials was carried out. The Nyquist plots generally consisted of semicircles corresponding to two time constants. However, at low temperatures (-10 to 10 A degrees C) and potential region between 3.90 and 4.20 V, three time constants were present. The third semicircle present at the middle to high frequency range was attributed to electronic resistance of LiMn2O4. Impedance parameters were evaluated using appropriate electrical equivalent circuits. From the temperature dependence of resistive parameters, activation energy values for the corresponding processes were calculated.
Resumo:
Boerhaavia diffusa is a traditional herbal medicine extensively used in the Ayurveda and Unani forms of medicine in India and many parts of the world. Different parts of the plant are used as an appetizer, alexiteric, eye tonic, for flushing out the renal system, and to treat blood pressure. This study was conducted to evaluate the in vivo genotoxic and/or antigenotoxic potential of punarnavine, a separated alkaloid from the root of B. diffusa using toxicity studies (OECD guideline 474, 1997). The genotoxic and antigenotoxic potential of punarnavine was assayed using the comet assay on lymphocytes, liver, spleen, brain, and bone marrow as well as using the micronucleus test in bone marrow cells including the in vitro chromosomal aberration test. The results demonstrated that none of the tested doses of punarnavine showed genotoxic effects by the comet assay, or clastogenic effects in the micronucleus test. On the other hand, for all cells evaluated, the three tested doses of punarnavine promoted inhibition of DNA damage induced by cyclophosphamide. Based on these results, we concluded that punarnavine, an alkaloid from the Boerhaavia diffusa root, has no genotoxic or clastogenic effects in our experimental conditions. However, it caused a significant decrease in DNA damage induced by cyclophosphamide. It is suggested that the antigenotoxic properties of this alkaloid may be of great pharmacological importance and beneficial for cancer prevention.
Resumo:
The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.
Resumo:
A simple and efficient protocol for the synthesis of novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) is described. Initially, p-anisaldehyde 1 was condensed (Mannich reaction) with acetone and ammonium acetate trihydrate afforded 2,6-bis(4-methoxyphenyl)piperidin-4-one 2. Then, methylation followed by oximation with hydroxylamine hydrochloride (NH(2)OHa (TM) HCl) furnished a key scaffold 4. Further, to explore the enhanced biological properties of the piperidin-4-one core i.e. the key scaffold 4 was conjugated with substituted benzoyl chlorides in the presence of anhydrous K2CO3 as base to obtain novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) in excellent yields. The newly synthesized compounds were characterized by elemental analysis, IR, H-1 NMR, C-13 NMR and mass spectroscopic techniques, and screened for their in vitro antioxidant and antimicrobial activities. Most of the compounds exerted positive efficacy towards the biological assays performed. Among the synthesized analogues, compounds 4l and 4m exhibited promising antioxidant activity and on the other hand compounds 4b and 4d manifested persuasive antibacterial activity, whereas compound 4b displayed stupendous antifungal activity against A. flavus strain.
Resumo:
The standard Q criterion (with Q > 1) describes the stability against local, axisymmetric perturbations in a disk supported by rotation and random motion. Most astrophysical disks, however, are under the influence of an external gravitational potential, which can significantly affect their stability. A typical example is a galactic disk embedded in a dark matter halo. Here, we do a linear perturbation analysis for a disk in an external potential and obtain a generalized dispersion relation and the effective stability criterion. An external potential, such as that due to the dark matter halo concentric with the disk, contributes to the unperturbed rotational field and significantly increases its stability. We obtain the values for the effective Q parameter for the Milky Way and for a low surface brightness galaxy, UGC 7321. We find that in each case the stellar disk by itself is barely stable and it is the dark matter halo that stabilizes the disk against local, axisymmetric gravitational instabilities. Thus, the dark matter halo is necessary to ensure local disk stability. This result has been largely missed so far because in practice the Q parameter for a galactic disk is obtained using the observed rotational field that already includes the effect of the halo
Resumo:
Interaction of adsorbate on charged surfaces, orientation of the analyte on the surface, and surface enhancement aspects have been studied. These aspects have been explored in details to explain the surface-enhanced Raman spectroscopic (SERS) spectra of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW or CL-20), a well-known explosive, and 2,4,6-trinitrotoluene (TNT) using one-pot synthesis of silver nanoparticles via biosynthetic route using natural precursor extracts of clove and pepper. The biosynthesized silver nanoparticles (bio Ag Nps) have been characterized using UV-vis spectroscopy, scanning electron microscopy and atomic force microscopy. SERS studies conducted using bio Ag Nps on different water insoluble analytes, such as CL-20 and TNT, lead to SERS signals at concentration levels of 400 pM. The experimental findings have been corroborated with density functional computational results, electrostatic surface potential calculations, Fukui functions and potential measurements.