923 resultados para Phosphoinositide-dependent Kinase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of the temperature-sensitive cdc37-1 mutant of Saccharomyces cerevisiae suggest that Cdc37 is required for passage through the G1 phase of the cell cycle, but its precise function is not known. We have investigated the role of Cdc37 in the regulation of the cyclin-dependent protein kinase Cdc28. We find that G1 arrest in the cdc37-1 mutant is accompanied by a decrease in the Cdc28 activity associated with the G1 cyclin Cln2. This defect appears to be caused by a decrease in the binding of Cdc28 and Cln2. cdc37-1 mutants also exhibit a defect in the binding and activation of Cdc28 by the mitotic cyclin Clb2. Thus Cdc37 may be a regulator that is required for the association of Cdc28 with multiple cyclins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium/phospholipid-dependent protein kinase (protein kinase C, PKC) has been suggested to play a role in the sensitivity of gamma-aminobutyrate type A (GABAA) receptors to ethanol. We tested a line of null mutant mice that lacks the gamma isoform of PKC (PKC gamma) to determine the role of this brain-specific isoenzyme in ethanol sensitivity. We found that the mutation reduced the amount of PKC gamma immunoreactivity in cerebellum to undetectable levels without altering the levels of the alpha, beta I, or beta II isoforms of PKC. The mutant mice display reduced sensitivity to the effects of ethanol on loss of righting reflex and hypothermia but show normal responses to flunitrazepam or pentobarbital. Likewise, GABAA receptor function of isolated brain membranes showed that the mutation abolished the action of ethanol but did not alter actions of flunitrazepam or pentobarbital. These studies show the unique interactions of ethanol with GABAA receptors and suggest protein kinase isoenzymes as possible determinants of genetic differences in response to ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The platelet-derived growth factor (PDGF) receptor is a member of the transmembrane growth factor receptor protein family with intrinsic protein-tyrosine kinase activity. We describe a potent protein-tyrosine kinase inhibitor (CGP 53716) that shows selectivity for the PDGF receptor in vitro and in the cell. The compound shows selectivity for inhibition of PDGF-mediated events such as PDGF receptor autophosphorylation, cellular tyrosine phosphorylation, and c-fos mRNA induction in response to PDGF stimulation of intact cells. In contrast, ligand-induced autophosphorylation of the epidermal growth factor (EGF) receptor, insulin receptor, and the insulin-like growth factor I receptor, as well as c-fos mRNA expression induced by EGF, fibroblast growth factor, and phorbol ester, was insensitive to inhibition by CGP 53716. In antiproliferative assays, the compound was approximately 30-fold more potent in inhibiting PDGF-mediated growth of v-sis-transformed BALB/c 3T3 cells relative to inhibition of EGF-dependent BALB/Mk cells, interleukin-3-dependent FDC-P1 cells, and the T24 bladder carcinoma line. When tested in vivo using highly tumorigenic v-sis- and human c-sis-transformed BALB/c 3T3 cells, CGP 53716 showed antitumor activity at well-tolerated doses. In contrast, CGP 53716 did not show antitumor activity against xenografts of the A431 tumor, which overexpresses the EGF receptor. These findings suggest that CGP 53716 may have therapeutic potential for the treatment of diseases involving abnormal cellular proliferation induced by PDGF receptor activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ADP-ribosylation factor-1 (ARF1) est une petite GTPase principalement connue pour son rôle dans la formation de vésicules au niveau de l’appareil de Golgi. Récemment, dans des cellules de cancer du sein, nous avons démontré qu’ARF1 est aussi un médiateur important de la signalisation du récepteur du facteur de croissance épidermique (EGFR) contrôlant la prolifération, la migration et l'invasion cellulaire. Cependant, le mécanisme par lequel l’EGFR active la GTPase ainsi que le rôle de cette dernière dans la régulation de la fonction du récepteur demeure inconnue. Dans cette thèse, nous avions comme objectifs de définir le mécanisme d'activation de ARF1 dans les cellules de cancer du sein hautement invasif et démontrer que l’activation de cette isoforme de ARF joue un rôle essentiel dans la résistance de ces cellules aux inhibiteurs de l'EGFR. Nos études démontrent que les protéines d’adaptatrices Grb2 et p66Shc jouent un rôle important dans l'activation de ARF1. Alors que Grb2 favorise le recrutement d’ARF1 à l'EGFR ainsi que l'activation de cette petite GTPase, p66Shc inhibe le recrutement du complexe Grb2-ARF1 au récepteur et donc contribue à limiter l’activation d’ARF1. De plus, nous démontrons que ARF1 favorise la résistance aux inhibiteurs des tyrosines kinases dans les cellules de cancer du sein hautement invasif. En effet, une diminution de l’expression de ARF1 a augmenté la sensibilité descellules aux inhibiteurs de l'EGFR. Nous montrons également que de hauts niveaux de ARF1 contribuent à la résistance des cellules à ces médicaments en améliorant la survie et les signaux prolifératifs à travers ERK1/2, Src et AKT, tout en bloquant les voies apoptotiques (p38MAPK et JNK). Enfin, nous mettons en évidence le rôle de la protéine ARF1 dans l’apoptose en réponse aux traitements des inhibiteurs de l’EGFR. Nos résultats indiquent que la dépletion d’ARF1 promeut la mort cellulaire induite par gefitinib, en augmentant l'expression de facteurs pro-apoptotiques (p66shc, Bax), en altérant le potentiel de la membrane mitochondriale et la libération du cytochrome C. Ensemble, nos résultats délimitent un nouveau mécanisme d'activation de ARF1 dans les cellules du cancer du sein hautement invasif et impliquent l’activité d’ARF1 comme un médiateur important de la résistance aux inhibiteurs EGFR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sildenafil, an inhibitor of the cGMP-degrading phosphodiesterase 5 that is used to treat erectile dysfunction, has been linked to an increased risk of melanoma. Here, we have examined the potential connection between cGMP-dependent signaling cascades and melanoma growth. Using a combination of biochemical assays and real-time monitoring of melanoma cells, we report a cGMP-dependent growth-promoting pathway in murine and human melanoma cells. We document that C-type natriuretic peptide (CNP), a ligand of the membrane-bound guanylate cyclase B, enhances the activity of cGMP-dependent protein kinase I (cGKI) in melanoma cells by increasing the intracellular levels of cGMP. Activation of this cGMP pathway promotes melanoma cell growth and migration in a p44/42 MAPK-dependent manner. Sildenafil treatment further increases intracellular cGMP concentrations, potentiating activation of this pathway. Collectively, our data identify this cGMP-cGKI pathway as the link between sildenafil usage and increased melanoma risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine/threonine protein kinase AMP-activated protein kinase (AMPK) is a key metabolic stress-responsive factor that promotes the adaptation of cells to their microenvironment. Elevated concentrations of intracellular AMP, caused by metabolic stress, are known to activate AMPK by phosphorylation of the catalytic subunit. Recently, the tumor suppressor serine/threonine protein kinase LKB1 was identified as an upstream kinases, AMPKKs. In the current study, we found that stimulation with growth factors also caused AMPK-alpha subunit phosphorylation. Interestingly, even an LKB1-nonexpressing cancer cell line, HeLa, exhibited growth factor-stimulated AMPK-alpha subunit phosphorylation, suggesting the presence of an LKB1-independent pathway for AMPK-alpha subunit phosphorylation. In the human pancreatic cancer cell line PANC-1, AMPK-alpha subunit phosphorylation promoted by IGF-I was suppressed by antisense ataxia telangiectasia mutated (ATM) expression. We found that IGF-1 also induced AMPK-alpha subunit phosphorylation in the human normal fibroblast TIG103 cell line, but failed to do so in a human fibroblast AT2-KY cell line lacking ATM. Immunoprecipitates of ATM collected from IGF-1-stimulated cells also caused the phosphorylation of the AMPK-alpha subunit in vitro. IGF-1-stimulated ATM phosphorylation at both threonine and tyrosine residues, and our results demonstrated that the phosphorylation of tyrosine in the ATM molecule is important for AMPK-alpha subunit phosphorylation during IGF-1 signaling. These results suggest that IGF-1 induces AMPK-alpha subunit phosphorylation via an ATM-dependent and LKB1-independent pathway. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Serum glucocorticoid regulated kinase (SGK-1) is induced in the kidney in diabetes mellitus. However, its role in the proximal tubule is unclear. This study determined the expression and functional role of SGK-1 in PTCs in high glucose conditions. As the epidermal growth factor (EGF) receptor is activated by both EGF and other factors implicated in diabetic nephropathy, the relationship of SGK-1 with EGFR activity was assessed. Methods. mRNA and protein expression of SGK-1 and mRNA expression of the sodium hydrogen exchanger NHE3 were measured in human PTCs exposed to 5 mmol/L (control) and 25 mmol/L (high) glucose. The effects of SGK-1 on cell growth, apoptosis, and progression through the cell cycle and NHE3 mRNA were examined following overexpression of SGK-1 in PTCs. The role of EGFR activation in observed changes was assessed by phospho-EGFR expression, and response to the EGFR blocker PKI166. SGK-1 expression was then assessed in vivo in a model of streptozotocin-induced diabetes mellitus type 2. Results. A total of 25 mmol/L glucose and EGF (10 ng/mL) increased SGK-1 mRNA (P < 0.005 and P < 0.002, respectively) and protein (both P < 0.02) expression. High glucose and overexpression of SGK-1 increased NHE3 mRNA (P < 0.05) and EGFR phosphorylation (P < 0.01), which were reversed by PKI166. SGK-1 overexpression increased PTC growth (P < 0.0001), progression through the cell cycle (P < 0.001), and increased NHE3 mRNA (P < 0.01), which were all reversed with PKI166. Overexpression of SGK-1 also protected against apoptosis induced in the PTCs (P < 0.0001). Up-regulation of tubular SGK-1 mRNA in diabetes mellitus was confirmed in vivo. Oral treatment with PKI166 attenuated this increase by 51%. No EGF protein was detectable in PTCs, suggestive of phosphorylation of the EGFR by high glucose and downstream induction of SGK-1. Conclusion. The effects of high glucose on PTC proliferation, reduced apoptosis and increased NHE3 mRNA levels are mediated by EGFR-dependent up-regulation of SGK-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endothelial cell apoptosis contributes to atherosclerosis and may be exacerbated by oxidative stress. Results from clinical trials using antioxidant supplementation are equivocal and could be enhanced by antioxidants with additional non-antioxidant properties such as a-lipoic acid and alpha-tocopherol. The aim of this study was to investigate the effects of these antioxidants on cytoprotective pathways and endothelial apoptosis. Endothelial cells were incubated with alpha-lipoic acid and alpha-tocopherol, alone or in combination, prior to incubation with H2O2 or staurosporine. alpha-lipoic acid pre-treatment alone increased caspase-3 activity in a dose-dependent manner. Both H2O2 and staurosporine increased DNA fragmentation and caspase-3 activity and pre-treatment of cells with a-lipoic acid and/or a-tocopherol failed to prevent stress-induced apoptosis. Neither antioxidant treatments nor apoptotic inducers alone altered expressions of BcI-2, Bax, HSP70 or pERK1/2 or pJNK. alpha-lipoic decreased pERK2 in staurosporine-treated cells in a dose-dependent manner. These findings indicate that pre-incubation with alpha-lipoic acid and alpha-tocopherol, alone or in combination, does not protect against oxidative- or non-oxidative-induced apoptosis in endothelial cells. Moreover, we have demonstrated a non-antioxidant, dose-dependent role of alpha-lipoic acid in caspase-3 and ERK2 activation. These data provide an insight and indicate caution in the use of high doses of alpha-lipoic acid as an antioxidant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial CpG-containing (CpG) DNA promotes survival of murine macrophages and triggers production of proinflammatory mediators. The CpG DNA-induced inflammatory response is mediated via TLR9, whereas a recent study reported that activation of the Akt prosurvival pathway occurs via DNA-dependent protein kinase (DNA-PK) and independently. of TLR9. We show, in this study, that Akt activation and survival of murine bone marrow-derived macrophages (BMM) triggered by CpG-containing phosphodiester oligodeoxynucleotides or CpG-containing phosphorothioate oligodeoxynucleotides was completely dependent on TLR9. In addition, survival triggered by CpG-containing phosphodiester oligodeoxynucleotides was not compromised in BMM from SCID mice that express a catalytically inactive form of DNA-PK. CpG DNA-induced survival of BMM was inhibited by the PI3K inhibitor, LY294002, but not by the MEK1/2 inhibitor, PD98059. The effect of LY294002 was specific to survival, because treatment of BMM with LY294002 affected CpG DNA-induced TNF-alpha production only modestly. Therefore, CpG DNA activates macrophage survival via TLR9 and the PI3K-Akt pathway and independently of DNA-PK and MEK-ERK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that human papillomavirus virus-like particles (VLPs) are able to activate the Ras/MAP kinase pathway. Ras can also elicit an anti-apoptotic signal via PI3-kinase so we investigated this further. Here we show that binding of VLPs from HPV types 6b, 18, 3 1, 35 and BPV1 results in activation of PI3-kinase. Activation was achieved by either L1 or L1/L2 VLPs and was dependent on both VLP-cell interaction and correct conformation of the virus particle. VLP-induced PI3-kinase activity resulted in efficient downstream signaling to Akt and consequent phosphorylation of FKHR and GSK3 beta. We also present evidence that PV signaling is activated via the alpha 6 beta 4 integrin. These data suggest that papillomaviruses use a common receptor that is able to signal through to Ras. Combined activation of the Ras/MAP kinase and PI3-kinase pathways may be beneficial for the virus by increasing cell numbers and producing an environment more conducive to infection. (c) 2006 Elsevier Inc. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exocytosis of neurotransmitter containing vesicles supports neuronal communication. The importance of molecular interactions involving specific lipids has become progressively more evident and the lipid composition of both the synaptic vesicle and the pre-synaptic plasma membrane at the active zone has significant functional consequences for neurotransmitter release. Several classes of lipids have been implicated in exocytosis including polyunsaturated fatty acids and phosphoinositides. This minireview will focus on recent developments regarding the role of phosphoinositides in neurosecretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activation of phosphoinositide 3-hydroxykinase (P13K) is currently believed to represent the critical regulatory event which leads to the production of a novel intracellular signal. We have examined the control of this pathway by a number of cell-surface receptors in NG115-401L-C3 neuronal cells. Insulin-like growth factor-I stimulated the accumulation of 3-phosphorylated inositol lipids in intact cells and the appearance of P13K in antiphosphotyrosine-antibody-directed immunoprecipitates prepared from lysed cells, suggesting that P13K had been activated by a mechanism involving a protein tyrosine kinase. In contrast, P13K in these cells was not regulated by a variety of G-protein-coupled receptors, nerve growth factor acting via a low affinity receptor, or receptors for transforming growth factor-beta and interleukin-1. The receptor-specificity of P13K activation in these cells places significant constraints on the possible physiological function(s) of this pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein-protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly Gq- and to a lesser extent Gs-mediated; p38 activation even had a small Gi-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.