946 resultados para Phonological segmentation
Resumo:
Background: Conventional magnetic resonance imaging (MRI) techniques are highly sensitive to detect multiple sclerosis (MS) plaques, enabling a quantitative assessment of inflammatory activity and lesion load. In quantitative analyses of focal lesions, manual or semi-automated segmentations have been widely used to compute the total number of lesions and the total lesion volume. These techniques, however, are both challenging and time-consuming, being also prone to intra-observer and inter-observer variability.Aim: To develop an automated approach to segment brain tissues and MS lesions from brain MRI images. The goal is to reduce the user interaction and to provide an objective tool that eliminates the inter- and intra-observer variability.Methods: Based on the recent methods developed by Souplet et al. and de Boer et al., we propose a novel pipeline which includes the following steps: bias correction, skull stripping, atlas registration, tissue classification, and lesion segmentation. After the initial pre-processing steps, a MRI scan is automatically segmented into 4 classes: white matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and partial volume. An expectation maximisation method which fits a multivariate Gaussian mixture model to T1-w, T2-w and PD-w images is used for this purpose. Based on the obtained tissue masks and using the estimated GM mean and variance, we apply an intensity threshold to the FLAIR image, which provides the lesion segmentation. With the aim of improving this initial result, spatial information coming from the neighbouring tissue labels is used to refine the final lesion segmentation.Results:The experimental evaluation was performed using real data sets of 1.5T and the corresponding ground truth annotations provided by expert radiologists. The following values were obtained: 64% of true positive (TP) fraction, 80% of false positive (FP) fraction, and an average surface distance of 7.89 mm. The results of our approach were quantitatively compared to our implementations of the works of Souplet et al. and de Boer et al., obtaining higher TP and lower FP values.Conclusion: Promising MS lesion segmentation results have been obtained in terms of TP. However, the high number of FP which is still a well-known problem of all the automated MS lesion segmentation approaches has to be improved in order to use them for the standard clinical practice. Our future work will focus on tackling this issue.
Resumo:
The choice network revenue management (RM) model incorporates customer purchase behavioras customers purchasing products with certain probabilities that are a function of the offeredassortment of products, and is the appropriate model for airline and hotel network revenuemanagement, dynamic sales of bundles, and dynamic assortment optimization. The underlyingstochastic dynamic program is intractable and even its certainty-equivalence approximation, inthe form of a linear program called Choice Deterministic Linear Program (CDLP) is difficultto solve in most cases. The separation problem for CDLP is NP-complete for MNL with justtwo segments when their consideration sets overlap; the affine approximation of the dynamicprogram is NP-complete for even a single-segment MNL. This is in contrast to the independentclass(perfect-segmentation) case where even the piecewise-linear approximation has been shownto be tractable. In this paper we investigate the piecewise-linear approximation for network RMunder a general discrete-choice model of demand. We show that the gap between the CDLP andthe piecewise-linear bounds is within a factor of at most 2. We then show that the piecewiselinearapproximation is polynomially-time solvable for a fixed consideration set size, bringing itinto the realm of tractability for small consideration sets; small consideration sets are a reasonablemodeling tradeoff in many practical applications. Our solution relies on showing that forany discrete-choice model the separation problem for the linear program of the piecewise-linearapproximation can be solved exactly by a Lagrangian relaxation. We give modeling extensionsand show by numerical experiments the improvements from using piecewise-linear approximationfunctions.
Resumo:
We report the case study of a French-Spanish bilingual dyslexic girl, MP, who exhibited a severe visual attention (VA) span deficit but preserved phonological skills. Behavioural investigation showed a severe reduction of reading speed for both single items (words and pseudo-words) and texts in the two languages. However, performance was more affected in French than in Spanish. MP was administered an intensive VA span intervention programme. Pre-post intervention comparison revealed a positive effect of intervention on her VA span abilities. The intervention further transferred to reading. It primarily resulted in faster identification of the regular and irregular words in French. The effect of intervention was rather modest in Spanish that only showed a tendency for faster word reading. Text reading improved in the two languages with a stronger effect in French but pseudo-word reading did not improve in either French or Spanish. The overall results suggest that VA span intervention may primarily enhance the fast global reading procedure, with stronger effects in French than in Spanish. MP underwent two fMRI sessions to explore her brain activations before and after VA span training. Prior to the intervention, fMRI assessment showed that the striate and extrastriate visual cortices alone were activated but none of the regions typically involved in VA span. Post-training fMRI revealed increased activation of the superior and inferior parietal cortices. Comparison of pre- and post-training activations revealed significant activation increase of the superior parietal lobes (BA 7) bilaterally. Thus, we show that a specific VA span intervention not only modulates reading performance but further results in increased brain activity within the superior parietal lobes known to housing VA span abilities. Furthermore, positive effects of VA span intervention on reading suggest that the ability to process multiple visual elements simultaneously is one cause of successful reading acquisition.
Resumo:
Melodic motifs form essential building blocks in Indian Classical music. The motifs, or key phrases, providestrong cues to the identity of the underlying raga in both Hindustani and Carnatic styles of Indian music. Automatic identification and clustering of similar motifs is relevant in this context. The inherent variations in various instances of a characteristic phrase in a bandish (composition)performance make it challenging to identify similar phrases in a performance. A nyas svara (long note)marks the ending of these phrases. The proposed method does segmentation of phrases through identification ofnyas and computes similarity with the reference characteristic phrase.
Resumo:
This article introduces EsPal: a Web-accessible repository containing a comprehensive set of properties of Spanish words. EsPal is based on an extensible set of data sources, beginning with a 300 million token written database and a 460 million token subtitle database. Properties available include word frequency, orthographic structure and neighborhoods, phonological structure and neighborhoods, and subjective ratings such as imageability. Subword structure properties are also available in terms of bigrams and trigrams, bi-phones, and bi-syllables. Lemma and part-of-speech information and their corresponding frequencies are also indexed. The website enables users to either upload a set of words to receive their properties, or to receive a set of words matching constraints on the properties. The properties themselves are easily extensible and will be added over time as they become available. It is freely available from the following website: http://www.bcbl.eu/databases/espal
Resumo:
Spondylocarpotarsal synostosis syndrome (SCT) (OMIM 272460), originally thought to be a failure of normal spine segmentation, is characterized by progressive fusion of vertebras and associates unsegmented bars, scoliosis, short stature, carpal and tarsal synostosis. Cleft palate, sensorineural or mixed hearing loss, joint limitation, clinodactyly, and dental enamel hypoplasia are variable manifestations. Twenty-five patients have been reported. Thirteen affected individuals were siblings from six families and four of these families were consanguineous. In four of those families, Krakow et al. [Krakow et al. (2004) Nat Genet 36:405-410] found homozygosity or compound heterozygosity for mutations in the gene encoding FLNB. This confirmed autosomal recessive inheritance of the disorder. We report on two new patients (a mother and her son) representing the first case of autosomal dominant inheritance. These patients met the clinical and radiological criteria for SCT and did not present any features which could exclude this diagnosis. Molecular analysis failed to identify mutations in NOG and FLNB. SCT is therefore, genetically heterogeneous. Both dominant and autosomal recessive forms of inheritance should be considered during genetic counseling.
Resumo:
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye.
Resumo:
OBJECTIVE: To investigate potential abnormalities in subcortical brain structures in conversion disorder (CD) compared with controls using a region of interest (ROI) approach. METHODS: Fourteen patients with motor CD were compared with 31 healthy controls using high-resolution MRI scans with an ROI approach focusing on the basal ganglia, thalamus and amygdala. Brain volumes were measured using Freesurfer, a validated segmentation algorithm. RESULTS: Significantly smaller left thalamic volumes were found in patients compared with controls when corrected for intracranial volume. These reductions did not vary with handedness, laterality, duration or severity of symptoms. CONCLUSIONS: These differences may reflect a primary disease process in this area or be secondary effects of the disorder, for example, resulting from limb disuse. Larger, longitudinal structural imaging studies will be required to confirm the findings and explore whether they are primary or secondary to CD.
Resumo:
Abstract Textual autocorrelation is a broad and pervasive concept, referring to the similarity between nearby textual units: lexical repetitions along consecutive sentences, semantic association between neighbouring lexemes, persistence of discourse types (narrative, descriptive, dialogal...) and so on. Textual autocorrelation can also be negative, as illustrated by alternating phonological or morpho-syntactic categories, or the succession of word lengths. This contribution proposes a general Markov formalism for textual navigation, and inspired by spatial statistics. The formalism can express well-known constructs in textual data analysis, such as term-document matrices, references and hyperlinks navigation, (web) information retrieval, and in particular textual autocorrelation, as measured by Moran's I relatively to the exchange matrix associated to neighbourhoods of various possible types. Four case studies (word lengths alternation, lexical repulsion, parts of speech autocorrelation, and semantic autocorrelation) illustrate the theory. In particular, one observes a short-range repulsion between nouns together with a short-range attraction between verbs, both at the lexical and semantic levels. Résumé: Le concept d'autocorrélation textuelle, fort vaste, réfère à la similarité entre unités textuelles voisines: répétitions lexicales entre phrases successives, association sémantique entre lexèmes voisins, persistance du type de discours (narratif, descriptif, dialogal...) et ainsi de suite. L'autocorrélation textuelle peut être également négative, comme l'illustrent l'alternance entre les catégories phonologiques ou morpho-syntaxiques, ou la succession des longueurs de mots. Cette contribution propose un formalisme markovien général pour la navigation textuelle, inspiré par la statistique spatiale. Le formalisme est capable d'exprimer des constructions bien connues en analyse des données textuelles, telles que les matrices termes-documents, les références et la navigation par hyperliens, la recherche documentaire sur internet, et, en particulier, l'autocorélation textuelle, telle que mesurée par le I de Moran relatif à une matrice d'échange associée à des voisinages de différents types possibles. Quatre cas d'étude illustrent la théorie: alternance des longueurs de mots, répulsion lexicale, autocorrélation des catégories morpho-syntaxiques et autocorrélation sémantique. On observe en particulier une répulsion à courte portée entre les noms, ainsi qu'une attraction à courte portée entre les verbes, tant au niveau lexical que sémantique.
Resumo:
Dyssegmental dysplasia, Silverman-Handmaker type (DDSH; #MIM 224410) is an autosomal recessive form of lethal dwarfism characterized by a defect in segmentation and fusion of vertebral bodies components ("anisospondyly") and by severe limb shortening. It is caused by mutations in the perlecan gene (HSPG2), but so far, only three molecularly confirmed cases have been reported. We report a novel case of DDSH in a fetus that presented at 15 weeks gestation with encephalocele, severe micromelic dwarfism and narrow thorax. After termination of pregnancy, radiographs showed short ribs, short and bent long bones and anisospondyly of two vertebral bodies. The fetus was homozygous for a previously undescribed null mutation in HSPG2.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
La segmentació de persones es molt difícil a causa de la variabilitat de les diferents condicions, com la postura que aquestes adoptin, color del fons, etc. Per realitzar aquesta segmentació existeixen diferents tècniques, que a partir d'una imatge ens retornen un etiquetat indicant els diferents objectes presents a la imatge. El propòsit d'aquest projecte és realitzar una comparativa de les tècniques recents que permeten fer segmentació multietiqueta i que son semiautomàtiques, en termes de segmentació de persones. A partir d'un etiquetatge inicial idèntic per a tots els mètodes utilitzats, s'ha realitzat una anàlisi d'aquests, avaluant els seus resultats sobre unes dades publiques, analitzant 2 punts: el nivell de interacció i l'eficiència.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.