966 resultados para Pd(II)-amino complexes
Resumo:
Reaction of salicylaldehyde semicarbazone (L-1), 2-hydroxyacetophenone semicarbazone (L-2), and 2-hydroxynaphthaldehyde semicarbazone (L-3) with [Pd(PPh3)(2)Cl-2] in ethanol in the presence of a base (NEt3) affords a family of yellow complexes (1a, 1b and 1c, respectively). In these complexes the semicarbazone ligands are coordinated to palladium in a rather unusual tridentate ONN-mode, and a PPh3 also remains coordinated to the metal center. Crystal structures of the 1b and 1c complexes have been determined, and structure of 1a has been optimized by a DFT method. In these complexes two potential donor sites of the coordinated semicarbazone, viz. the hydrazinic nitrogen and carbonylic oxygen, remain unutilized. Further reaction of these palladium complexes (1a, 1b and 1c) with [Ru(PPh3)(2)(CO)(2)Cl-2] yields a family of orange complexes (2a, 2b and 2c, respectively). In these heterodinuclear (Pd-Ru) complexes, the hydrazinic nitrogen (via dissociation of the N-H proton) and the carbonylic oxygen from the palladium-containing fragment bind to the ruthenium center by displacing a chloride and a carbonyl. Crystal structures of 2a and 2c have been determined, and the structure of 2b has been optimized by a DFT method. All the complexes show characteristic H-1 NMR spectra and, intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on all the complexes shows an irreversible oxidation of the coordinated semicarbazone within 0.86-0.93 V vs. SCE, and an irreversible reduction of the same ligand within -0.96 to -1.14 V vs. SCE. Both the mononuclear (1a, 1b and 1c) and heterodinuclear (2a, 2b and 2c) complexes are found to efficiently catalyze Suzuki, Heck and Sonogashira type C-C coupling reactions utilizing a variety of aryl bromides and aryl chlorides. The Pd-Ru complexes (2a, 2b and 2c) are found to be better catalysts than the Pd complexes (1a, 1b and 1c) for Suzuki and Heck coupling reactions.
Resumo:
The trans-[Cu2L2Cl2] (1), and cis-[Cu2L2Cl2]·H2O (2) isomers of a diphenoxido bridged Cu2O2 core have been synthesized using a tridentate reduced Schiff base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol. The geometry around Cu(II) is intermediate between square pyramid and trigonal bipyramid (Addison parameter, tau = 0.463) in 1 but nearly square pyramidal (tau = 0.049) in 2. The chloride ions are coordinated to Cu(II) and are trans oriented in 1 but cis oriented in 2. Both isomers have been optimized using density functional theory (DFT) calculations and it is found that the trans isomer is 7.2 kcal mol(-1) more favorable than the cis isomer. However, the hydrogen bonding interaction of crystallized water molecule with chloride ions compensates for the energy difference and stabilizes the cis isomer. Both complexes have been converted to a very rare phenoxido-azido bridged trinuclear species, [Cu3L2(mu(1,1)-N-3)(2)(H2O)(2)(ClO4)(2)] (3) which has also been characterized structurally. All the complexes are antiferromagnetically coupled but the magnitude of the coupling constants are significantly different (J = -156.60, -652.31, and -31.54 cm(-1) for 1, 2, and 3 respectively). Density functional theory (DFT) calculations have also been performed to gain further insight into the qualitative theoretical interpretation on the overall magnetic behavior of the complexes.
Resumo:
The epoxide ring in 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) opens up in its reaction with 4-methylaniline and 4-methoxyaniline in water in equimolar proportion at room temperature without any Lewis acid catalyst to give a monohydrate of 6-(4-methyl-phenylamino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L′·H2O) and 6-(4-methoxyphenyl-amino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L″) respectively. Reaction time decreases from 72 to 14 h in boiling water. But the yields become less. Reaction of L with Zn(ClO4)2·6H2O in methanol in 3:1 molar ratio at room temperature affords white [ZnL3](ClO4)2·H2O. The X-ray crystal structure of the acetonitrile solvate [ZnL3](ClO4)2·MeCN has been determined which shows that the metal has a distorted octahedral N6 coordination sphere. [ZnL3](ClO4)2·2H2O reacts with 4-methylaniline and 4-methoxyaniline in boiling water in 1:3 molar proportion in the absence of any Lewis acid catalyst to produce [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, respectively in 1–4 h time in somewhat low yield. In the 1H NMR spectra of [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, only one sharp methyl signal is observed implicating that only one diastereomer out of the 23 possibilities is formed. The same diastereomers are obtained when L′·H2O and L″ are reacted directly with Zn(ClO4)2·6H2O in tetrahydrofuran at room temperature in very good yields. Reactions of L′·H2O and L″ with Ru(phen)2Cl2·2H2O (phen = 1,10-phenanthroline) in equimolar proportion in methanol–water mixture under refluxing condition lead to the isolation of two diastereomers of [Ru(phen)2L′](ClO4)2·2H2O and [Ru(phen)2L″](ClO4)2·2H2O.
Resumo:
During the reaction of di-2-pyridyl ketone (dpk) with Na(2)[PdCl(4)] in alcoholic media, the C=O fragment of dpk undergoes facile solvolysis and the transformed di-2-pyridyl ketone (dpk(ROH), R = Me or H) binds to palladium as NN-donor. When the reaction is carried out in refluxing methanol, a mono-complex of type [Pd(dpk(MeOH))Cl(2)] is obtained. A similar reaction in ethanol affords a bis-complex of type [Pd(dpk(ROH))(2)]Cl(2). Structure of both the complexes have been determined by X-ray crystallography. In acetonitrile solution the [pd(dpk(MeOH))Cl(2)] and [pd(dpk(ROH))(2)]Cl(2) complexes show intense absorptions in the visible and ultraviolet region, origin of which has been probed through uvr calculations. These two palladium complexes are found to be efficient catalysts for Suzuki cross-coupling reactions.
Resumo:
Reaction of the 4-R-benzaldehyde thiosemicarbazones (denoted in general as L-R; R = OCH(3), CH(3), H, Cl and NO(2)) with trans-[Pd(PPh(3))(2)Cl(2)] afforded a group of mixed-ligand complexes (denoted in general as 1-R) incorporating a N,S-coordinated thiosemicarbazone. a triphenylphosphine and a chloride. Similar reaction with Na(2)[PdCl(4)] afforded a family of bis-thiosemicarbazone complexes (denoted in general as 2-R), where each ligand is N,S-coordinated. Crystal structures of 1-CH(3), 1-NO(2), 2-OCH(3), 2-NO(2) and L-NO(2) have been determined. In all the complexes the thiosemicarbazones are coordinated to the metal center, via dissociation of the acidic proton, as bidentate N,S-donors forming five-membered chelate rings. With reference to the structure of the uncoordinated thiosemicarbazone, this coordination mode is associated with a conformational change around the C=N bond. All the 1-R and 2-R complexes display intense absorptions in the visible region. Catalytic activity of the 1-R and 2-R complexes towards some C-C coupling reactions (e.g. Suzuki, Heck and Sonogashira) has been examined and while both are found to be efficient catalysts, 1-R is much better catalyst than 2-R.
Resumo:
Cobalt(III) complexes of diacetyl monooxime benzoyl hydrazone (dmoBH(2)) and diacetyl monooxime isonicotinoyl hydrazone (dmoInH(2)) have been synthesized and characterized by elemental analyses and spectroscopic methods. The X-ray crystal structures of the two hydrazone ligands, as well as that of the cobalt(III) complex [Co(III)(dmoInH)(2)]Cl center dot 2H(2)O, are also reported. It is found that in the cobalt(III) complexes the Co(III) ion is hexa-coordinated, the hydrazone ligands behaving as mono-anionic tridentate O,N,N donors. In the [Co(III)(dmoInH) (2)]Cl center dot 2H(2)O complex, the amide and the oxime hydrogens are deprotonated for both the ligands, while the isonicotine nitrogens are protonated. In the [Co(III)(d-moBH)(2)] Cl complex, only the amide nitrogens are deprotonated. It is shown that the additional hydrogen bonding capability of the isonicotine nitrogen results in different conformation and supramolecular structure for dmoInH(2), compared to dmoBH(2), in the solid state. Comparing the structure of the [CoIII(dmoInH)(2)]Cl center dot 2H(2)O with that of the Zn(II) complex of the same ligand, reported earlier, it is seen that the metal ion has a profound influence on the supramolecular structure, due to change in geometrical dispositions of the chelate rings.
Resumo:
The phenoxo-bridged dinuclear Cu-II complex [Cu2L2-(NCNCN)(2)] (1) and the dicyanamide-bridged molecular rectangle [Cu4L4{mu(1,5)-(NCNCN)(2)}]center dot(ClO4)(2)(H2O)(2) (2) were synthesized using the tridentate reduced Schiff-base ligand HL {2-[(2-dimethylamino-ethylamino) methyl] phenol}. The complexes were characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Complex 2 was formed through the joining of the phenoxo-bridged dinuclear Cu2O2 cores of 1 via the mu(1,5)-bridging mode of dicyanamide. The structural properties of the Cu2O2 cores in two complexes are significantly different. The geometry of the copper ions is distorted trigonal bipyramid in 1 but is nearly square-pyramidal in 2. These differences have a marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = -185.2 and -500.9 cm(-1) for 1 and 2, respectively) differ considerably.
Resumo:
Two pentaaza macrocycles containing pyridine in the backbone, namely 3,6,9,12,18-pentaazabicyclo[12.3.1] octadeca-1(18),14,16-triene ([15]pyN(5)), and 3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),15,17-triene ([16]pyN(5)), were synthesized in good yields. The acid-base behaviour of these compounds was studied by potentiometry at 298.2 K in aqueous solution and ionic strength 0.10 M in KNO3. The protonation sequence of [15]pyN(5) was investigated by H-1 NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of the two ligands with Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ metal ions were performed under the same experimental conditions. The results showed that all the complexes formed with the 15-membered ligand, particularly those of Cu2+ and especially Ni2+, are thermodynamically more stable than with the larger macrocycle. Cyclic voltammetric data showed that the copper(II) complexes of the two macrocycles exhibited analogous behaviour, with a single quasi-reversible one-electron transfer reduction process assigned to the Cu(II)/Cu(I) couple. The UV-visible-near IR spectroscopic and magnetic moment data of the nickel(II) complexes in solution indicated a tetragonal distorted coordination geometry for the metal centre. X-band EPR spectra of the copper(II) complexes are consistent with distorted square pyramidal geometries. The crystal structure of [Cu([15]pyN(5))](2+) determined by X-ray diffraction showed the copper(II) centre coordinated to all five macrocyclic nitrogen donors in a distorted square pyramidal environment.
Resumo:
Reaction of Cu(ClO(4))(2)center dot 6H(2)O with the 1:2 condensate of benzildihydrazone and 2-acetylpyridine, in methanol in equimolar ratio yields a green compound which upon recrystallisation from 1:1 CH(2)Cl(2)-C(6)H(6) mixture affords [CuL(H(2)O)](ClO(4))(2)center dot 1/2C(6)H(6). The complex crystallises in the space group P-1 with a = 8.028(11) angstrom, b = 12.316(17) angstrom, c = 18.14(3) angstrom, alpha = 97.191(10)degrees, beta = 94.657(10)degrees and gamma = 108.039(10)degrees. It is single helical with the metal having a distorted trigonal bipyramidal N(4)O coordination sphere. The acid dissociation constant of the Cu(I) complex in CH(3)CN is 3.34 +/- 0.19. The X band EPR spectrum of the compound is rhombic with g(1) = 2.43, g(2) = 2.10 g(3) = 2.02 and A(1) = 79.3 x 10(-4) cm(-1). The Cu(II/I) potential of the complex in CH(2)Cl(2) at a glassy carbon electrode is 0.43 V vs SCE. It is argued that the copper-water bond persists in the corresponding copper(I) species. Its implications on the single helix-double helix interconversion in copper helicates are discussed. DFT calculations at the B3LYP/6-311G** level shows that the binding energy of water in the single helicol live-coordinate copper(I) species [CuL(H(2)O)](+) is similar to 40 kJ mol(-1).
Resumo:
A mononuclear octahedral nickel(II) complex [Ni(HL(1))(2)](SCN)(2) (1) and an unusual penta-nuclear complex [{(NiL(2))(mu-SCN)}(4)Ni(NCS)(2)]center dot 2CH(3)CN (2) where HL(1) = 3-(2-aminoethylimino)butan-2-one oxime and HL(2) = 3-(hydroxyimino)butan-2-ylidene)amino)propylimino)butan-2-one oxime have been prepared and characterized by X-ray crystallography. The mono-condensed ligand, HL(1), was prepared by the 1:1 condensation of the 1,2-diaminoethane with diacetylmonoxime in methanol under high dilution. Complex 1 is found to be a mer isomer and the amine hydrogen atoms are involved in extensive hydrogen bonding with the thiocyanate anions. The dicondensed ligand, HL(2), was prepared by the 1:2 condensation of the 1,3-diaminopropane with diacetylmonoxime in methanol. The central nickel(II) in 2 is coordinated by six nitrogen atoms of six thiocyanate groups, four of which utilize their sulphur atoms to connect four NiL2 moieties to form a penta-nuclear complex and it is unique in the sense that this is the first thiocyanato bridged penta-nuclear nickel(II) compound with Schiff base ligands.
Resumo:
Reaction of a potential NCN-pincer ligand, viz. 1,3-di(phenylazo)benzene (L), with [Rh(PPh3)(3)Cl] affords, via a C-H bond activation, an interesting dinuclear Rh(II) complex (1), and with RhCl3 center dot 3H(2)O affords a mononuclear Rh(III) complex (2) containing a catalytically useful Rh-OH2 fragment.
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]·2H2O (1) of mono-condensed tridentate Schiff baseligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the NiII as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)2·4H2O furnishing the complex [NiL(NCS)] (2) and with CuCl2·2H2O in the presence of NaN3 or NH4SCN producing [CuL(N3)]2 (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)2·6H2O and Cu(NO3)2·3H2O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)2·6H2O or Ni(NO3)2·6H2O to yield [Ni(hap)2] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, NiII possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around CuII in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around CuII is square pyramidal. In both 5 and 6, the CuII atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks.
Resumo:
Artificial diagenesis of the intra-crystalline proteins isolated from Patella vulgata was induced by isothermal heating at 140 °C, 110 °C and 80 °C. Protein breakdown was quantified for multiple amino acids, measuring the extent of peptide bond hydrolysis, amino acid racemisation and decomposition. The patterns of diagenesis are complex; therefore the kinetic parameters of the main reactions were estimated by two different methods: 1) a well-established approach based on fitting mathematical expressions to the experimental data, e.g. first-order rate equations for hydrolysis and power-transformed first-order rate equations for racemisation; and 2) an alternative model-free approach, which was developed by estimating a “scaling” factor for the independent variable (time) which produces the best alignment of the experimental data. This method allows the calculation of the relative reaction rates for the different temperatures of isothermal heating. High-temperature data were compared with the extent of degradation detected in sub-fossil Patella specimens of known age, and we evaluated the ability of kinetic experiments to mimic diagenesis at burial temperature. The results highlighted a difference between patterns of degradation at low and high temperature and therefore we recommend caution for the extrapolation of protein breakdown rates to low burial temperatures for geochronological purposes when relying solely on kinetic data.
Resumo:
This work describes syntheses and electrochemical, spectroscopic, and bonding properties in a new series of dinuclear ruthenium(II) complexes bridged by polyaromatic (biphenyl, fluorene, phenanthrene, and pyrene) alkynyl ligands. Longitudinal expansion of the π-conjugated polyaromatic core of the bridging ligands caused a reduced potential difference between the anodic steps and reinforced their bridge-localized nature, as evidenced by UV/vis/near-IR and IR spectroelectrochemical data combined with DFT and TDDFT calculations. Importantly, the intricate multiple IR ν(CC) absorption bands for the singly oxidized states imply a thermal population of a range of conformers (rotamers) with distinct electronic character. This behavior was demonstrated with more accurate DFT calculations of selected nontruncated 1e− oxidized complexes in three different conformations. The combined experimental and theoretical data reveal that thermally populated rotamers featuring various mutual orientations of the ligated metal termini and the bridging diethynyl polyaromatic moieties have a significant impact on the electronic absorption and ν(CC) wavenumbers of the singly oxidized systems.
Resumo:
A series of ruthenium(II) complexes [{RuCl(CO)(PMe3)3(–CHvCH–)}nX], 1a–1c (1a: n = 3, X = 3,3’’- dimethyl-2,2’:3’,2’’-terthiophene; 1b: n = 2, X = 2,2’-bithiophene; 1c: n = 2, X = 2,3-bis(3-methylthiophen- 2-yl)benzothiophene) and [{Cp*(dppe)2Ru(–CuC–)}3X], 1d (X = 3,3’’-dimethyl-2,2’:3’,2’’- terthiophene), were prepared and characterized by 1H, 13C and 31P NMR. Their redox, spectroscopic and bonding properties were studied with a range of spectro-electrochemical methods in combination with density functional theory calculations. The first two anodic steps observed for 1a and 1d are largely localized on the lateral frameworks of the molecular triangle, the direct conjugation between them being precluded due to the photostable open form of the dithienyl ethene moiety. The third anodic step is then mainly localized on the centerpiece of the triangular structure, affecting both bithiophene laterals. The experimental IR and UV-vis-NIR spectroelectrochemical data and, largely, also DFT calculations account for this explanation, being further supported by direct comparison with the anodic behavior of reference diruthenium complexes 1b and 1c.