917 resultados para Pattern-recognition Methods
Resumo:
El Hogar Digital Accesible (HDA) de la ETSIST nace con el propósito de acercar las nuevas Tecnologías de la Información a las personas que precisan de necesidades concretas de accesibilidad y usabilidad, dotándoles de herramientas que les permitan aumentar su calidad de vida, confort, seguridad y autonomía. El entorno del HDA consta de elementos de control para puertas, persianas, iluminación, agua o gas, sensores de temperatura, incendios, gas, sistemas de climatización, sistemas de entretenimiento y sistemas de seguridad tales como detectores de presencia y alarmas. Todo ello apoyado sobre una arquitectura de red que proporciona una pasarela residencial y un acceso a banda ancha. El objetivo principal de este PFG ha sido el desarrollo de un sistema de autenticación para el Hogar Digital Accesible de bajo coste. La idea de integrar un sistema de autenticación en el HDA, surge de la necesidad de proteger de accesos no deseados determinados servicios disponibles dentro de un ámbito privado. Algunos de estos servicios pueden ser tales como el acceso a la lectura de los mensajes disponibles en el contestador automático, el uso de equipos multimedia, la desconexión de alarmas de seguridad o simplemente la configuración de ambientes según el usuario que esté autenticado (intensidad de luz, temperatura de la sala, etc.). En el desarrollo han primado los principios de accesibilidad, usabilidad y seguridad necesarios para la creación de un entorno no invasivo, que permitiera acreditar la identidad del usuario frente al sistema HDA. Se ha planteado como posible solución, un sistema basado en el reconocimiento de un trazo realizado por el usuario. Este trazo se usará como clave de cara a validar a los usuarios. El usuario deberá repetir el trazado que registró en el sistema para autenticarse. Durante la ejecución del presente PFG, se justificará la elección de este mecanismo de autenticación frente a otras alternativas disponibles en el mercado. Para probar la aplicación, se ha podido contar con dos periféricos de distintas gamas, el uDraw creado para la PS3 que se compone de una tableta digitalizadora y un lápiz que permite recoger los trazos realizados por el usuario de forma inalámbrica y la tableta digitalizadora Bamboo de Wacom. La herramienta desarrollada permite a su vez, la posibilidad de ser usada por otro tipo de dispositivos como es el caso del reloj con acelerómetro de 3 ejes de Texas Instruments Chronos eZ430 capaz de trasladar los movimientos del usuario al puntero de un ratón. El PFG se encuentra dividido en tres grandes bloques de flujo de trabajo. El primero se centra en el análisis del sistema y las tecnologías que lo componen, incluyendo los distintos algoritmos disponibles para realizar la autenticación basada en reconocimiento de patrones aplicados a imágenes que mejor se adaptan a las necesidades del usuario. En el segundo bloque se recoge una versión de prueba basada en el análisis y el diseño UML realizado previamente, sobre la que se efectuaron pruebas de concepto y se comprobó la viabilidad del proyecto. El último bloque incluye la verificación y validación del sistema mediante pruebas que certifican que se han alcanzado los niveles de calidad necesarios para la consecución de los objetivos planteados, generando finalmente la documentación necesaria. Como resultado del trabajo realizado, se ha obtenido un sistema que plantea una arquitectura fácilmente ampliable lograda a través del uso de técnicas como la introspección, que permiten separar la lógica de la capa de negocio del código que la implementa, pudiendo de forma simple e intuitiva sustituir código mediante ficheros de configuración, lo que hace que el sistema sea flexible y escalable. Tras la realización del PFG, se puede concluir que el producto final obtenido ha respondido de forma satisfactoria alcanzando los niveles de calidad requeridos, siendo capaz de proporcionar un sistema de autenticación alternativo a los convencionales, manteniendo unas cotas de seguridad elevadas y haciendo de la accesibilidad y el precio sus características más reseñables. ABSTRACT. Accessible Digital Home (HDA) of the ETSIST was created with the aim of bringing the latest information and communications technologies closer to the people who has special needs of accessibility and usability increasing their quality of life, comfort, security and autonomy. The HDA environment has different control elements for doors, blinds, lighting, water or gas, temperature sensors, fire protection systems, gas flashover, air conditioning systems, entertainments systems and security systems such as intruders detectors and alarms. Everything supported by an architecture net which provides a broadband residential services gateway. The main goal of this PFG was the development of a low-cost authentication system for the Accessible Digital Home. The idea of integrating an authentication system on the HDA, stems from the need to safeguard certain private key network resources from unauthorized access. Some of said resources are the access to the answering machine messages, the use of multimedia devices, the alarms deactivation or the parameter settings for each environment as programmed by the authenticated user (light intensity, room temperature, etc.). During the development priority was given to concepts like accessibility, usability and security. All of them necessary to create a non invasive environment that allows the users to certify their identity. A system based on stroke pattern recognition, was considered as a possible solution. This stroke is used as a key to validate users. The user must repeat the stroke that was saved on the system to validate access. The selection of this authentication mechanism among the others available options will be justified during this PFG. Two peripherals with different ranges were used to test the application. One of them was uDraw design for the PS3. It is wireless and is formed by a pen and a drawing tablet that allow us to register the different strokes drawn by the user. The other one was the Wacom Bamboo tablet, that supports the same functionality but with better accuracy. The developed tool allows another kind of peripherals like the 3-axes accelerometer digital wristwatch Texas Instruments Chronos eZ430 capable of transfering user movements to the mouse cursor. The PFG is divided by three big blocks that represent different workflows. The first block is focused on the system analysis and the technologies related to it, including algorithms for image pattern recognition that fits the user's needs. The second block describes how the beta version was developed based on the UML analysis and design previously done. It was tested and the viability of the project was verified. The last block contains the system verification and validation. These processes certify that the requirements have been fulfilled as well as the quality levels needed to reach the planned goals. Finally all the documentation has been produced. As a result of the work, an expandable system has been created, due to the introspection that provides the opportunity to separate the business logic from the code that implements it. With this technique, the code could be replaced throughout configuration files which makes the system flexible and highly scalable. Once the PFG has finished, it must therefore be concluded that the final product has been a success and high levels of quality have been achieved. This authentication tool gives us a low-cost alternative to the conventional ones. The new authentication system remains security levels reasonably high giving particular emphasis to the accessibility and the price.
Resumo:
The aim of this work is an approach using multisensor remote sensing techniques to recognize the potential remains and recreate the original landscape of three archaeological sites. We investigate the spectral characteristics of the reflectance parameter and emissivity in the pattern recognition of archaeological materials in several hyperspectral scenes of the prehispanic site in Palmar Sur (Costa Rica), the Jarama Valley site and the celtiberian city of Segeda in Spain. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of HyMAP, AHS, MASTER and ATM have been used. Several experiments on natural scenarios of Costa Rica and Spain of different complexity, have been designed. Spectral patterns and thermal anomalies have been calculated as evidences of buried remains and change detection. First results, land cover change analyses and their consequences in the digital heritage registration are discussed.
Resumo:
A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.
Resumo:
Plant mitogen-activated protein kinase (MAPK) casca des transduce environmental molecular signals and developmental cues into cellular responses. Among these signals are the pathogen-associated molecular patterns (PAMPs) that upon recognition by plant pattern recognition receptors (PRR), including Receptor-Like Kinases (RLKs), activate MAPK cascades that regulate PAMP-triggered immunity responses (PTI).
Resumo:
The application of the Electro-Mechanical Impedance (EMI) method for damage detection in Structural Health Monitoring has noticeable increased in recent years. EMI method utilizes piezoelectric transducers for directly measuring the mechanical properties of the host structure, obtaining the so called impedance measurement, highly influenced by the variations of dynamic parameters of the structure. These measurements usually contain a large number of frequency points, as well as a high number of dimensions, since each frequency range swept can be considered as an independent variable. That makes this kind of data hard to handle, increasing the computational costs and being substantially time-consuming. In that sense, the Principal Component Analysis (PCA)-based data compression has been employed in this work, in order to enhance the analysis capability of the raw data. Furthermore, a Support Vector Machine (SVM), which has been widespread used in machine learning and pattern recognition fields, has been applied in this study in order to model any possible existing pattern in the PCAcompress data, using for that just the first two Principal Components. Different known non-damaged and damaged measurements of an experimental tested beam were used as training input data for the SVM algorithm, using as test input data the same amount of cases measured in beams with unknown structural health conditions. Thus, the purpose of this work is to demonstrate how, with a few impedance measurements of a beam as raw data, its healthy status can be determined based on pattern recognition procedures.
Resumo:
In the recent years, the computer vision community has shown great interest on depth-based applications thanks to the performance and flexibility of the new generation of RGB-D imagery. In this paper, we present an efficient background subtraction algorithm based on the fusion of multiple region-based classifiers that processes depth and color data provided by RGB-D cameras. Foreground objects are detected by combining a region-based foreground prediction (based on depth data) with different background models (based on a Mixture of Gaussian algorithm) providing color and depth descriptions of the scene at pixel and region level. The information given by these modules is fused in a mixture of experts fashion to improve the foreground detection accuracy. The main contributions of the paper are the region-based models of both background and foreground, built from the depth and color data. The obtained results using different database sequences demonstrate that the proposed approach leads to a higher detection accuracy with respect to existing state-of-the-art techniques.
Resumo:
PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.
Resumo:
Las cascadas de señalización mediadas por proteína quinasas activadas por mitógeno (MAP quinasas) son capaces de integrar y transducir señales ambientales en respuestas celulares. Entre estas señales se encuentran los PAMPs/MAMPs (Pathogen/Microbe-Associated Molecular Patterns), que son moléculas de patógenos o microorganismos, o los DAMPs (Damaged-Associated Molecular Patterns), que son moléculas derivadas de las plantas producidas en respuesta a daño celular. Tras el reconocimiento de los PAMPs/DAMPs por receptores de membrana denominados PRRs (Pattern Recognition Receptors), como los receptores con dominio quinasa (RLKs) o los receptores sin dominio quinasa (RLPs), se activan respuestas moleculares, incluidas cascadas de MAP quinasas, que regulan la puesta en marcha de la inmunidad activada por PAMPs (PTI). Esta Tesis describe la caracterización funcional de la MAP quinasa quinasa quinasa (MAP3K) YODA (YDA), que actúa como un regulador clave de la PTI en Arabidopsis. Se ha descrito previamente que YDA controla varios procesos de desarrollo, como la regulación del patrón estomático, la elongación del zigoto y la arquitectura floral. Hemos caracterizado un alelo mutante hipomórfico de YDA (elk2 o yda11) que presenta una elevada susceptibilidad a patógenos biótrofos y necrótrofos. Notablemente, plantas que expresan una forma constitutivamente activa de YDA (CA-YDA), con una deleción en el dominio N-terminal, presentan una resistencia de amplio espectro frente a diferentes tipos de patógenos, incluyendo hongos, oomicetos y bacterias, lo que indica que YDA juega un papel importante en la regulación de la resistencia de las plantas a patógenos. Nuestros datos indican que esta función es independiente de las respuestas inmunes mediadas por los receptores previamente caracterizados FLS2 y CERK1, que reconocen los PAMPs flg22 y quitina, respectivamente, y que están implicados en la resistencia de Arabidopsis frente a bacterias y hongos. Hemos demostrado que YDA controla la resistencia frente al hongo necrótrofo Plectosphaerella cucumerina y el patrón estomático mediante su interacción genética con la RLK ERECTA (ER), un PRR implicado en la regulación de estos procesos. Por el contrario, la interacción genética entre ER y YDA en la regulación de otros procesos de desarrollo es aditiva en lugar de epistática. Análisis genéticos indicaron que MPK3, una MAP quinasa que funciona aguas abajo de YDA en el desarrollo estomático, es un componente de la ruta de señalización mediada por YDA para la resistencia frente a P. cucumerina, lo que sugiere que el desarrollo de las plantas y la PTI comparten el módulo de transducción de MAP quinasas asociado a YDA. Nuestros experimentos han revelado que la resistencia mediada por YDA es independiente de las rutas de señalización reguladas por las hormonas de defensa ácido salicílico, ácido jasmónico, ácido abscísico o etileno, y también es independiente de la ruta de metabolitos secundarios derivados del triptófano, que están implicados en inmunidad vegetal. Además, hemos demostrado que respuestas asociadas a PTI, como el aumento en la concentración de calcio citoplásmico, la producción de especies reactivas de oxígeno, la fosforilación de MAP quinasas y la expresión de genes de defensa, no están afectadas en el mutante yda11. La expresión constitutiva de la proteína CA-YDA en plantas de Arabidopsis no provoca un aumento de las respuestas PTI, lo que sugiere la existencia de mecanismos de resistencia adicionales regulados por YDA que son diferentes de los regulados por FLS2 y CERK1. En línea con estos resultados, nuestros datos transcriptómicos revelan una sobre-representación en plantas CA-YDA de genes de defensa que codifican, por ejemplo, péptidos antimicrobianos o reguladores de muerte celular, o proteínas implicadas en la biogénesis de la pared celular, lo que sugiere una conexión potencial entre la composición e integridad de la pared celular y la resistencia de amplio espectro mediada por YDA. Además, análisis de fosfoproteómica indican la fosforilación diferencial de proteínas relacionadas con la pared celular en plantas CA-YDA en comparación con plantas silvestres. El posible papel de la ruta ER-YDA en la regulación de la integridad de la pared celular está apoyado por análisis bioquímicos y glicómicos de las paredes celulares de plantas er, yda11 y CA-YDA, que revelaron cambios significativos en la composición de la pared celular de estos genotipos en comparación con la de plantas silvestres. En resumen, nuestros datos indican que ER y YDA forman parte de una nueva ruta de inmunidad que regula la integridad de la pared celular y respuestas defensivas, confiriendo una resistencia de amplio espectro frente a patógenos. ABSTRACT Plant mitogen-activated protein kinase (MAPK) cascades transduce environmental signals and developmental cues into cellular responses. Among these signals are the pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the damage-associated molecular patterns (DAMPs). These PAMPs/DAMPs, upon recognition by plant pattern recognition receptors (PRRs), such as Receptor-Like Kinases (RLKs) and Receptor-Like Proteins (RLPs), activate molecular responses, including MAPK cascades, which regulate the onset of PAMP-triggered immunity (PTI). This Thesis describes the functional characterization of the MAPK kinase kinase (MAP3K) YODA (YDA) as a key regulator of Arabidopsis PTI. YDA has been previously described to control several developmental processes, such as stomatal patterning, zygote elongation and inflorescence architecture. We characterized a hypomorphic, non-embryo lethal mutant allele of YDA (elk2 or yda11) that was found to be highly susceptible to biotrophic and necrotrophic pathogens. Remarkably, plants expressing a constitutive active form of YDA (CA-YDA), with a deletion in the N-terminal domain, showed broad-spectrum resistance to different types of pathogens, including fungi, oomycetes and bacteria, indicating that YDA plays a relevant function in plant resistance to pathogens. Our data indicated that this function is independent of the immune responses regulated by the well characterized FLS2 and CERK1 RLKs, which are the PRRs recognizing flg22 and chitin PAMPs, respectively, and are required for Arabidopsis resistance to bacteria and fungi. We demonstrate that YDA controls resistance to the necrotrophic fungus Plectosphaerella cucumerina and stomatal patterning by genetically interacting with ERECTA (ER) RLK, a PRR involved in regulating these processes. In contrast, the genetic interaction between ER and YDA in the regulation of other ER-associated developmental processes was additive, rather than epistatic. Genetic analyses indicated that MPK3, a MAP kinase that functions downstream of YDA in stomatal development, also regulates plant resistance to P. cucumerina in a YDA-dependent manner, suggesting that the YDA-associated MAPK transduction module is shared in plant development and PTI. Our experiments revealed that YDA-mediated resistance was independent of signalling pathways regulated by defensive hormones like salicylic acid, jasmonic acid, abscisic acid or ethylene, and of the tryptophan-derived metabolites pathway, which are involved in plant immunity. In addition, we showed that PAMP-mediated PTI responses, such as the increase of cytoplasmic Ca2+ concentration, reactive oxygen species (ROS) burst, MAPK phosphorylation, and expression of defense-related genes are not impaired in the yda11 mutant. Furthermore, the expression of CA-YDA protein does not result in enhanced PTI responses, further suggesting the existence of additional mechanisms of resistance regulated by YDA that differ from those regulated by the PTI receptors FLS2 and CERK1. In line with these observations, our transcriptomic data revealed the over-representation in CA-YDA plants of defensive genes, such as those encoding antimicrobial peptides and cell death regulators, and genes encoding cell wall-related proteins, suggesting a potential link between plant cell wall composition and integrity and broad spectrum resistance mediated by YDA. In addition, phosphoproteomic data revealed an over-representation of genes encoding wall-related proteins in CA-YDA plants in comparison with wild-type plants. The putative role of the ER-YDA pathway in regulating cell wall integrity was further supported by biochemical and glycomics analyses of er, yda11 and CA-YDA cell walls, which revealed significant changes in the cell wall composition of these genotypes compared with that of wild-type plants. In summary, our data indicate that ER and YDA are components of a novel immune pathway that regulates cell wall integrity and defensive responses, which confer broad-spectrum resistance to pathogens.
Resumo:
The initial step in most facial age estimation systems consists of accurately aligning a model to the output of a face detector (e.g. an Active Appearance Model). This fitting process is very expensive in terms of computational resources and prone to get stuck in local minima. This makes it impractical for analysing faces in resource limited computing devices. In this paper we build a face age regressor that is able to work directly on faces cropped using a state-of-the-art face detector. Our procedure uses K nearest neighbours (K-NN) regression with a metric based on a properly tuned Fisher Linear Discriminant Analysis (LDA) projection matrix. On FG-NET we achieve a state-of-the-art Mean Absolute Error (MAE) of 5.72 years with manually aligned faces. Using face images cropped by a face detector we get a MAE of 6.87 years in the same database. Moreover, most of the algorithms presented in the literature have been evaluated on single database experiments and therefore, they report optimistically biased results. In our cross-database experiments we get a MAE of roughly 12 years, which would be the expected performance in a real world application.
Resumo:
Uno de los mayores retos para la comunidad científica es conseguir que las máquinas posean en un futuro la capacidad del sistema visual y cognitivo humanos, de forma que, por ejemplo, en entornos de video vigilancia, puedan llegar a proporcionar de manera automática una descripción fiable de lo que está ocurriendo en la escena. En la presente tesis, mediante la propuesta de un marco de trabajo de referencia, se discuten y plantean los pasos necesarios para el desarrollo de sistemas más inteligentes capaces de extraer y analizar, a diferentes niveles de abstracción y mediante distintos módulos de procesamiento independientes, la información necesaria para comprender qué está sucediendo en un conjunto amplio de escenarios de distinta naturaleza. Se parte de un análisis de requisitos y se identifican los retos para este tipo de sistemas en la actualidad, lo que constituye en sí mismo los objetivos de esta tesis, contribuyendo así a un modelo de datos basado en el conocimiento que permitirá analizar distintas situaciones en las que personas y vehículos son los actores principales, dejando no obstante la puerta abierta a la adaptación a otros dominios. Así mismo, se estudian los distintos procesos que se pueden lanzar a nivel interno así como la necesidad de integrar mecanismos de realimentación a distintos niveles que permitan al sistema adaptarse mejor a cambios en el entorno. Como resultado, se propone un marco de referencia jerárquico que integra las capacidades de percepción, interpretación y aprendizaje para superar los retos identificados en este ámbito; y así poder desarrollar sistemas de vigilancia más robustos, flexibles e inteligentes, capaces de operar en una variedad de entornos. Resultados experimentales ejecutados sobre distintas muestras de datos (secuencias de vídeo principalmente) demuestran la efectividad del marco de trabajo propuesto respecto a otros propuestos en el pasado. Un primer caso de estudio, permite demostrar la creación de un sistema de monitorización de entornos de parking en exteriores para la detección de vehículos y el análisis de plazas libres de aparcamiento. Un segundo caso de estudio, permite demostrar la flexibilidad del marco de referencia propuesto para adaptarse a los requisitos de un entorno de vigilancia completamente distinto, como es un hogar inteligente donde el análisis automático de actividades de la vida cotidiana centra la atención del estudio. ABSTRACT One of the most ambitious objectives for the Computer Vision and Pattern Recognition research community is that machines can achieve similar capacities to the human's visual and cognitive system, and thus provide a trustworthy description of what is happening in the scene under surveillance. Thus, a number of well-established scenario understanding architectural frameworks to develop applications working on a variety of environments can be found in the literature. In this Thesis, a highly descriptive methodology for the development of scene understanding applications is presented. It consists of a set of formal guidelines to let machines extract and analyse, at different levels of abstraction and by means of independent processing modules that interact with each other, the necessary information to understand a broad set of different real World surveillance scenarios. Taking into account the challenges that working at both low and high levels offer, we contribute with a highly descriptive knowledge-based data model for the analysis of different situations in which people and vehicles are the main actors, leaving the door open for the development of interesting applications in diverse smart domains. Recommendations to let systems achieve high-level behaviour understanding will be also provided. Furthermore, feedback mechanisms are proposed to be integrated in order to let any system to understand better the environment and the logical context around, reducing thus the uncertainty and noise, and increasing its robustness and precision in front of low-level or high-level errors. As a result, a hierarchical cognitive architecture of reference which integrates the necessary perception, interpretation, attention and learning capabilities to overcome main challenges identified in this area of research is proposed; thus allowing to develop more robust, flexible and smart surveillance systems to cope with the different requirements of a variety of environments. Once crucial issues that should be treated explicitly in the design of this kind of systems have been formulated and discussed, experimental results shows the effectiveness of the proposed framework compared with other proposed in the past. Two case studies were implemented to test the capabilities of the framework. The first case study presents how the proposed framework can be used to create intelligent parking monitoring systems. The second case study demonstrates the flexibility of the system to cope with the requirements of a completely different environment, a smart home where activities of daily living are performed. Finally, general conclusions and future work lines to further enhancing the capabilities of the proposed framework are presented.
Resumo:
An increasing number of proteins with weak sequence similarity have been found to assume similar three-dimensional fold and often have similar or related biochemical or biophysical functions. We propose a method for detecting the fold similarity between two proteins with low sequence similarity based on their amino acid properties alone. The method, the proximity correlation matrix (PCM) method, is built on the observation that the physical properties of neighboring amino acid residues in sequence at structurally equivalent positions of two proteins of similar fold are often correlated even when amino acid sequences are different. The hydrophobicity is shown to be the most strongly correlated property for all protein fold classes. The PCM method was tested on 420 proteins belonging to 64 different known folds, each having at least three proteins with little sequence similarity. The method was able to detect fold similarities for 40% of the 420 sequences. Compared with sequence comparison and several fold-recognition methods, the method demonstrates good performance in detecting fold similarities among the proteins with low sequence identity. Applied to the complete genome of Methanococcus jannaschii, the method recognized the folds for 22 hypothetical proteins.
Resumo:
The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.
Resumo:
Mammalian class A macrophage-specific scavenger receptors (SR-A) exhibit unusually broad binding specificity for a wide variety of polyanionic ligands. The properties of these receptors suggest that they may be involved in atherosclerosis and host defense. We have previously observed a similar receptor activity in Drosophila melanogaster embryonic macrophages and in the Drosophila macrophage-like Schneider L2 cell line. Expression cloning was used to isolate from L2 cells a cDNA that encodes a third class (class C) of scavenger receptor, Drosophila SR-CI (dSR-CI). dSR-CI expression was restricted to macrophages/hemocytes during embryonic development. When expressed in mammalian cells, dSR-CI exhibited high affinity and saturable binding of 125I-labeled acetylated low density lipoprotein and mediated its chloroquine-dependent, presumably lysosomal, degradation. Although the broad polyanionic ligand-binding specificity of dSR-CI was similar to that of SR-A, their predicted protein sequences are not similar. dSR-CI is a 609-residue type I integral membrane protein containing several well-known sequence motifs, including two complement control protein (CCP) domains and somatomedin B, MAM, and mucin-like domains. Macrophage scavenger receptors apparently mediate important, well-conserved functions and may be pattern-recognition receptors that arose early in the evolution of host-defense mechanisms. Genetic and physiologic analysis of dSR-CI function in Drosophila should provide further insights into the roles played by scavenger receptors in host defense and development.
Resumo:
This research proposes a methodology to improve computed individual prediction values provided by an existing regression model without having to change either its parameters or its architecture. In other words, we are interested in achieving more accurate results by adjusting the calculated regression prediction values, without modifying or rebuilding the original regression model. Our proposition is to adjust the regression prediction values using individual reliability estimates that indicate if a single regression prediction is likely to produce an error considered critical by the user of the regression. The proposed method was tested in three sets of experiments using three different types of data. The first set of experiments worked with synthetically produced data, the second with cross sectional data from the public data source UCI Machine Learning Repository and the third with time series data from ISO-NE (Independent System Operator in New England). The experiments with synthetic data were performed to verify how the method behaves in controlled situations. In this case, the outcomes of the experiments produced superior results with respect to predictions improvement for artificially produced cleaner datasets with progressive worsening with the addition of increased random elements. The experiments with real data extracted from UCI and ISO-NE were done to investigate the applicability of the methodology in the real world. The proposed method was able to improve regression prediction values by about 95% of the experiments with real data.
Resumo:
A Internet das Coisas é um novo paradigma de comunicação que estende o mundo virtual (Internet) para o mundo real com a interface e interação entre objetos. Ela possuirá um grande número de dispositivos heteregôneos interconectados, que deverá gerar um grande volume de dados. Um dos importantes desafios para seu desenvolvimento é se guardar e processar esse grande volume de dados em aceitáveis intervalos de tempo. Esta pesquisa endereça esse desafio, com a introdução de serviços de análise e reconhecimento de padrões nas camadas inferiores do modelo de para Internet das Coisas, que procura reduzir o processamento nas camadas superiores. Na pesquisa foram analisados os modelos de referência para Internet das Coisas e plataformas para desenvolvimento de aplicações nesse contexto. A nova arquitetura de implementada estende o LinkSmart Middeware pela introdução de um módulo para reconhecimento de padrões, implementa algoritmos para estimação de valores, detecção de outliers e descoberta de grupos nos dados brutos, oriundos de origens de dados. O novo módulo foi integrado à plataforma para Big Data Hadoop e usa as implementações algorítmicas do framework Mahout. Este trabalho destaca a importância da comunicação cross layer integrada à essa nova arquitetura. Nos experimentos desenvolvidos na pesquisa foram utilizadas bases de dados reais, provenientes do projeto Smart Santander, de modo a validar da nova arquitetura de IoT integrada aos serviços de análise e reconhecimento de padrões e a comunicação cross-layer.