981 resultados para Palmer Search-expedition.
Resumo:
Utilisant les plus récentes données recueillies par le détecteur ATLAS lors de collisions pp à 7 et 8 TeV au LHC, cette thèse établira des contraintes sévères sur une multitude de modèles allant au-delà du modèle standard (MS) de la physique des particules. Plus particulièrement, deux types de particules hypothétiques, existant dans divers modèles théoriques et qui ne sont pas présentes dans le MS, seront étudiés et sondés. Le premier type étudié sera les quarks-vectoriels (QV) produits lors de collisions pp par l’entremise de couplages électrofaibles avec les quarks légers u et d. On recherchera ces QV lorsqu’ils se désintègrent en un boson W ou Z, et un quark léger. Des arguments théoriques établissent que sous certaines conditions raisonnables la production simple dominerait la production en paires des QV. La topologie particulière des évènements en production simple des QV permettra alors la mise en oeuvre de techniques d’optimisation efficaces pour leur extraction des bruits de fond électrofaibles. Le deuxième type de particules recherché sera celles qui se désintègrent en WZ lorsque ces bosons de jauges W, et Z se désintègrent leptoniquement. Les états finaux détectés par ATLAS seront par conséquent des évènements ayant trois leptons et de l’énergie transverse manquante. La distribution de la masse invariante de ces objets sera alors examinée pour déterminer la présence ou non de nouvelles résonances qui se manifesterait par un excès localisé. Malgré le fait qu’à première vue ces deux nouveaux types de particules n’ont que très peu en commun, ils ont en réalité tous deux un lien étroit avec la brisure de symétrie électrofaible. Dans plusieurs modèles théoriques, l’existence hypothétique des QV est proposé pour annuler les contributions du quark top aux corrections radiatives de la masse du Higgs du MS. Parallèlement, d’autres modèles prédisent quant à eux des résonances en WZ tout en suggérant que le Higgs est une particule composite, chambardant ainsi tout le sector Higgs du MS. Ainsi, les deux analyses présentées dans cette thèse ont un lien fondamental avec la nature même du Higgs, élargissant par le fait même nos connaissances sur l’origine de la masse intrinsèque des particules. En fin de compte, les deux analyses n’ont pas observé d’excès significatif dans leurs régions de signal respectives, ce qui permet d’établir des limites sur la section efficace de production en fonction de la masse des résonances.
Resumo:
Le Canada accepte des demandes d’asile sur la base de l'orientation sexuelle depuis plus de 20 ans. Quoi qu’il en soit, cette recherche permet de douter du fait que les demandes sur la base de l’orientation sexuelle déposées par des femmes soient traitées de façon adéquate. Pour garantir l’accès à la protection des femmes appartenant à des minorités sexuelles, une analyse du risque de persécution fondé sur l'orientation sexuelle doit incorporer des considérations de genre ainsi que divers autres facteurs d’ordre social et culturel. À partir d’une étude de cas de demandes du statut de refugié déposées par des femmes sur la base de l’orientation sexuelle et rejetées par la Commission de l'immigration et du statut de réfugié entre 2010 et 2013, cette recherche identifie des procédés décisionnels problématiques qui font obstacle au droit d’asile de ces femmes. Les résultats de cette étude révèlent qu’une analyse intersectionnelle, laquelle prend acte des formes variées et multiples de l’oppression dans un contexte social donné, est d’importance cruciale pour une évaluation éclairée et non tronquée des risques de persécution pour les minorités sexuelles féminines. À la lumière de ces résultats, ce mémoire propose qu’une analyse intersectionnelle accompagne une nécessaire formation pour les membres de la Commission de l'immigration et du statut de réfugié du Canada sur des questions particulières à des minorités sexuelles.
Resumo:
Dans deux articles récents, Clare Palmer défend la portée morale de la distinction entre animaux non humains domestiqués et animaux non humains sauvages suivant une approche « contextuelle ». Suivant cette approche, Palmer considère que les liens historiques qui unissent les animaux domestiqués aux êtres humains, à l'origine causale d'un état de dépendance et de vulnérabilité subi par les premiers, génèrent des obligations morales spéciales à leur égard (devoir de protection, notamment) non partagées par les animaux non-domestiqués (« sauvages »). Considérant tout d'abord les limites de la distinction sauvage/domestique et de l'approche contextuelle proposées par Palmer, cet article questionne la capacité de l'approche contextuelle de Palmer à pouvoir faire sens néanmoins d'une autre idée de sauvage, à savoir un sauvage « localisé » ou environnemental.
Resumo:
Queueing system in which arriving customers who find all servers and waiting positions (if any) occupied many retry for service after a period of time are retrial queues or queues with repeated attempts. This study deals with two objectives one is to introduce orbital search in retrial queueing models which allows to minimize the idle time of the server. If the holding costs and cost of using the search of customers will be introduced, the results we obtained can be used for the optimal tuning of the parameters of the search mechanism. The second one is to provide insight of the link between the corresponding retrial queue and the classical queue. At the end we observe that when the search probability Pj = 1 for all j, the model reduces to the classical queue and when Pj = 0 for all j, the model becomes the retrial queue. It discusses the performance evaluation of single-server retrial queue. It was determined by using Poisson process. Then it discuss the structure of the busy period and its analysis interms of Laplace transforms and also provides a direct method of evaluation for the first and second moments of the busy period. Then it discusses the M/ PH/1 retrial queue with disaster to the unit in service and orbital search, and a multi-server retrial queueing model (MAP/M/c) with search of customers from the orbit. MAP is convenient tool to model both renewal and non-renewal arrivals. Finally the present model deals with back and forth movement between classical queue and retrial queue. In this model when orbit size increases, retrial rate also correspondingly increases thereby reducing the idle time of the server between services
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.
Resumo:
Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID⁺. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.
Resumo:
In this paper, we present a P2P-based database sharing system that provides information sharing capabilities through keyword-based search techniques. Our system requires neither a global schema nor schema mappings between different databases, and our keyword-based search algorithms are robust in the presence of frequent changes in the content and membership of peers. To facilitate data integration, we introduce keyword join operator to combine partial answers containing different keywords into complete answers. We also present an efficient algorithm that optimize the keyword join operations for partial answer integration. Our experimental study on both real and synthetic datasets demonstrates the effectiveness of our algorithms, and the efficiency of the proposed query processing strategies.
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task
Resumo:
Resumen tomado de la publicaci??n