954 resultados para PULSE DURATION
Resumo:
Vibronic excitations of the tri-atomic molecule OClO (A(2)A(2)(nu(1), nu(2), nu(3)) <-- (XB1)-B-2 (0, 0, 0)) with weak and strong ultra-short laser fields are studied within full quantum wavepacket dynamics in hyperspherical coordinates. Different dynamics is observed following excitation with laser pulses of different intensities. With a strong laser pulse, many vibrational states are excited and a spatially more localised wavepacket arises. The numerical results show that the population of different vibrational states of the wavepacket on the excited potential energy surface is altered by the intensity of the laser pulse. The numerical results also suggest a related effect on the phase of the wavepacket. These interesting phenomena can be understood by an analysis of the corresponding results for two model diatomic molecules. The possible physical mechanisms of control of chemical processes using strong laser fields are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Multiphoton ionization of NO via intermediate Rydberg states with ultra-short laser pulses is investigated with time-resolved photoelectron spectroscopy in combination with fermosecond pump-probe technology. The Rydberg states of NO, which are characterized by obvious ac-Stark shift in ultra-strong laser field, can be tuned in resonance to ionize NO molecule at one's will with identical laser pulses, i.e., one can 'select' resonance path to ionization. The results shown in this Letter demonstrate that the states holding notable dynamic Stark shift provide us another dimension to chemical control with strong laser field. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Here we investigated the analytical performances of the bismuth-modified zeolite doped carbon paste electrode (BiF-ZDCPE) for trace Cd and Pb analysis. The characteristics of bismuth-modified electrodes were improved greatly via addition of synthetic zeolite into carbon paste. To obtain high reproducibility and sensitivity, optimum experimental conditions for bismuth deposition Were Studied.
Resumo:
The multicolour three-photon resonant ionization spectra of U-238 were measured by using the pulsed dye lasers system synchronously pumped by a frequency doubled Nd:YAG-laser 532 nm output(operated at 10 Hz),a device for atomic beam of U, time-of-flight mass spectrometer and boxcar integrator. The dye laser pulses have a 6 ns duration. Beams from the dye lasers, which have the same polarization direction and are focused by lenses, entered an interaction chamber through opposite windows on a common axis and spatialy overlapped the U atomic beam. The optical pulse from dye laser DL2 was delayed to arrive at the interaction region 8 ns after the pulse from dye laser DL1; in the same way,the pulse from DL3 was delayed 8 ns after from DL2. The atomic beam device was made from stainless steel. We generated the U vapor by heating solid U in a graphite crucible by e-type electron -field on first excited states were studied in uranium atom. The question how to determine single-colour, two-colour and three-colour three-photon resonant ionization peak in the three-colour three-photon resonant ionization spectra diagram were solved.
Resumo:
The objective of the study is to investigate the suitability of using Pulse-coherent Acoustic Doppler Profiler (PCADP) to estimate suspended sediment concentration (SSC). The acoustic backscatter intensity was corrected for spreading and absorption loss, then calibrated with OBS and finally converted to SSC. The results show that there is a good correlation between SSC and backscatter intensity with R value of 0.74. The mean relative error is 22.4%. Then the time span of little particle size variation was also analyzed to exclude the influence of size variation. The correlation coefficient increased to 0.81 and the error decreased to 18.9%. Our results suggest that the PCADP can meet the requirement of other professional instruments to estimate SSC with the errors between 20% and 50%, and can satisfy the need of dynamics study of suspended particles.
Resumo:
The aim of this study was to determine the effect of different concentrations of normobaric oxygen (NBO) on neurological function and the expression of caspase-3 and -9 in a rat model of acute cerebral ischaemia. Sprague-Dawley rats (n=120) were randomly divided into four groups (n=30 per group), including 3 groups given NBO at concentrations of 33%, 45% or 61% and one control group given air (21% oxygen). After 2 h of ischaemic occlusion, each group was further subdivided into six subgroups (n=5) during reperfusion according to the duration (3, 6, 12, 24, 48 or 72 h) and concentration of NBO (33%, 45% or 61%) or air treatment. The Fluorescence Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to detect caspase-3 and -9 mRNA and protein relative expression respectively. The Neurologic Impairment Score (NIS) was significantly lower in rats given 61% NBO ≥3 h after reperfusion when compared to the control group (P<0.05, Mann–Whitney U). NBO significantly reduced caspase-3 and -9 mRNA and protein expression when compared to the control group at all NBO concentrations and time points (P<0.05, ANOVA). The expression of caspase-3 and -9 was lower in the group given 61% NBO compared any other group, and this difference was statistically significant when compared to the group given 33% NBO for ≥48 h and the control group (both P<0.05, ANOVA). These findings indicate that NBO may inhibit the apoptotic pathway by reducing caspase-3 and -9 expression, thereby promoting neurological functional recovery after stroke.
Resumo:
The aim of this study was to assess the appearance of cardiac troponins (cTnI and/or cTnT) after a short bout (30 s) of ‘all-out’ intense exercise and to determine the stability of any exercise-related cTnI release in response to repeated bouts of high intensity exercise separated by 7 days recovery. Eighteen apparently healthy, physically active, male university students completed two all-out 30 s cycle sprint, separated by 7 days. cTnI, blood lactate and catecholamine concentrations were measured before, immediately after and 24 h after each bout. Cycle performance, heart rate and blood pressure responses to exercise were also recorded. Cycle performance was modestly elevated in the second trial [6·5% increase in peak power output (PPO)]; there was no difference in the cardiovascular, lactate or catecholamine response to the two cycle trials. cTnI was not significantly elevated from baseline through recovery (Trial 1: 0·06 ± 0·04 ng ml−1, 0·05 ± 0·04 ng ml−1, 0·03 ± 0·02 ng ml−1; Trial 2: 0·02 ± 0·04 ng ml−1, 0·04 ± 0·03 ng ml−1, 0·05 ± 0·06 ng ml−1) in either trial. Very small within subject changes were not significantly correlated between the two trials (r = 0·06; P>0·05). Subsequently, short duration, high intensity exercise does not elicit a clinically relevant response in cTnI and any small alterations likely reflect the underlying biological variability of cTnI measurement within the participants.
Resumo:
Malignant or benign tumors may be ablated with high‐intensity focused ultrasound (HIFU). This technique, known as focused ultrasound surgery (FUS), has been actively investigated for decades, but slow to be implemented and difficult to control due to lack of real‐time feedback during ablation. Two methods of imaging and monitoring HIFU lesions during formation were implemented simultaneously, in order to investigate the efficacy of each and to increase confidence in the detection of the lesion. The first, Acousto‐Optic Imaging (AOI) detects the increasing optical absorption and scattering in the lesion. The intensity of a diffuse optical field in illuminated tissue is mapped at the spatial resolution of an ultrasound focal spot, using the acousto‐optic effect. The second, Harmonic Motion Imaging (HMI), detects the changing stiffness in the lesion. The HIFU beam is modulated to force oscillatory motion in the tissue, and the amplitude of this motion, measured by ultrasound pulse‐echo techniques, is influenced by the stiffness. Experiments were performed on store‐bought chicken breast and freshly slaughtered bovine liver. The AOI results correlated with the onset and relative size of forming lesions much better than prior knowledge of the HIFU power and duration. For HMI, a significant artifact was discovered due to acoustic nonlinearity. The artifact was mitigated by adjusting the phase of the HIFU and imaging pulses. A more detailed model of the HMI process than previously published was made using finite element analysis. The model showed that the amplitude of harmonic motion was primarily affected by increases in acoustic attenuation and stiffness as the lesion formed and the interaction of these effects was complex and often counteracted each other. Further biological variability in tissue properties meant that changes in motion were masked by sample‐to‐sample variation. The HMI experiments predicted lesion formation in only about a quarter of the lesions made. In simultaneous AOI/HMI experiments it appeared that AOI was a more robust method for lesion detection.
Resumo:
While cochlear implants (CIs) usually provide high levels of speech recognition in quiet, speech recognition in noise remains challenging. To overcome these difficulties, it is important to understand how implanted listeners separate a target signal from interferers. Stream segregation has been studied extensively in both normal and electric hearing, as a function of place of stimulation. However, the effects of pulse rate, independent of place, on the perceptual grouping of sequential sounds in electric hearing have not yet been investigated. A rhythm detection task was used to measure stream segregation. The results of this study suggest that while CI listeners can segregate streams based on differences in pulse rate alone, the amount of stream segregation observed decreases as the base pulse rate increases. Further investigation of the perceptual dimensions encoded by the pulse rate and the effect of sequential presentation of different stimulation rates on perception could be beneficial for the future development of speech processing strategies for CIs.
Resumo:
A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.
Resumo:
Exposing individuals to an isolated component (a prime) of a prior event alleviates its forgetting. Two experiments with 120 human infants between 3 and 18 months of age determined the minimum duration of a prime that can reactivate a forgotten memory and how long the reactivated memory persists. Infants learned an operant task, forgot it, were exposed to the prime, and later were tested for renewed retention. In Experiment 1, the minimum duration of an effective prime decreased logarithmically with age, but was always longer than the duration of a mere glance. In Experiment 2, the reactivated memory was forgotten twice as fast after a minimum-duration prime as after a full-length one, irrespective of priming delay and infant age. These data reveal that the minimum effective prime duration psychophysically equates the accessibility of forgotten memories. We conclude that priming is perceptually based with effects that are organized on a ratio (log) scale.
Resumo:
High-throughput analysis of animal behavior requires software to analyze videos. Such software typically depends on the experiments' being performed in good lighting conditions, but this ideal is difficult or impossible to achieve for certain classes of experiments. Here, we describe techniques that allow long-duration positional tracking in difficult lighting conditions with strong shadows or recurring "on"/"off" changes in lighting. The latter condition will likely become increasingly common, e.g., for Drosophila due to the advent of red-shifted channel rhodopsins. The techniques enabled tracking with good accuracy in three types of experiments with difficult lighting conditions in our lab. Our technique handling shadows relies on single-animal tracking and on shadows' and flies' being accurately distinguishable by distance to the center of the arena (or a similar geometric rule); the other techniques should be broadly applicable. We implemented the techniques as extensions of the widely-used tracking software Ctrax; however, they are relatively simple, not specific to Drosophila, and could be added to other trackers as well.