892 resultados para POSTNATAL MYOGENESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assisted reproductive technologies (ART) predispose the offspring to vascular dysfunction, arterial hypertension, and hypoxic pulmonary hypertension. Recently, cardiac remodeling and dysfunction during fetal and early postnatal life have been reported in offspring of ART, but it is not known whether these cardiac alterations persist later in life and whether confounding factors contribute to this problem. We, therefore, assessed cardiac function and pulmonary artery pressure by echocardiography in 54 healthy children conceived by ART (mean age 11.5 ± 2.4 yr) and 54 age-matched (12.2 ± 2.3 yr) and sex-matched control children. Because ART is often associated with low birth weight and prematurity, two potential confounders associated with cardiac dysfunction, only singletons born with normal birth weight at term were studied. Moreover, because cardiac remodeling in infants conceived by ART was observed in utero, a situation associated with increased right heart load, we also assessed cardiac function during high-altitude exposure, a condition associated with hypoxic pulmonary hypertension-induced right ventricular overload. We found that, while at low altitude cardiac morphometry and function was not different between children conceived by ART and control children, under the stressful conditions of high-altitude-induced pressure overload and hypoxia, larger right ventricular end-diastolic area and diastolic dysfunction (evidenced by lower E-wave tissue Doppler velocity and A-wave tissue Doppler velocity of the lateral tricuspid annulus) were detectable in children and adolescents conceived by ART. In conclusion, right ventricular dysfunction persists in children and adolescents conceived by ART. These cardiac alterations appear to be related to ART per se rather than to low birth weight or prematurity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. METHODS We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. RESULTS We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. CONCLUSIONS Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Pancreatic stone protein (PSP) has been identified as a promising sepsis marker in adults, children and neonates. However, data on population-based reference values are lacking. This study aimed to establish age-specific reference values for PSP. METHODS PSP was determined using a specific ELISA. PSP serum concentrations were determined in 372 healthy subjects including 217 neonates, 94 infants and children up to 16 years, and 61 adults. The adjacent categories method was used to determine which age categories had significantly different PSP concentrations. RESULTS PSP circulating levels were not gender-dependent and ranged from 1.0 to 99.4 ng/ml with a median of 9.2 ng/ml. PSP increased significantly between the age categories, from a median of 2.6 ng/ml in very preterm newborns, to 6.3 ng/ml in term newborns, to 16.1 ng/ml in older children (p < 0.001). PSP levels were higher on postnatal day three compared to levels measured immediately post delivery (p < 0.001). Paired umbilical artery and umbilical vein samples were strongly correlated (p < 0.001). Simultaneously obtained capillary heel-prick versus venous samples showed a good level of agreement for PSP (Rho 0.89, bias 19 %). CONCLUSIONS This study provides age-specific normal values that may be used to define cut-offs for future trials on PSP. We demonstrate an age-dependent increase of PSP from birth to childhood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The postnatal development and maturation of the gastrointestinal (GI) tract of neonatal calves is crucial for their survival. Major morphological and functional changes in the calf's GI tract initiated by colostrum bioactive substances promote the establishment of intestinal digestion and absorption of food. It is generally accepted that colostrum intake provokes the maturation of organs and systems in young calves, illustrating the significance of the cow-to-calf connection at birth. These postnatal adaptive changes of the GI tissues in neonatal calves are especially induced by the action of bioactive substances such as insulin-like growth factors, hormones, or cholesterol carriers abundantly present in colostrum. These substances interact with specific cell-surface receptors or receptor-like transporters expressed in the GI wall of neonatal calves to elicit their biological effects. Therefore, the abundance and activity of cell surface receptors and receptor-like transporters binding colostral bioactive substances are a key aspect determining the effects of the cow-to-calf connection at birth. The present review compiles the information describing the effects of colostrum feeding on selected serum metabolic and endocrine traits in neonatal calves. In this context, the current paper discusses specifically the consequences of colostrum feeding on the GI expression and activity of cell-receptors and receptor-like transporters binding growth hormone, insulin-like growth factors, insulin, or cholesterol acceptors in neonatal calves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To assess the impact of potential risk factors on the development of respiratory symptoms and their specific modification by breastfeeding in infants in the first year of life. STUDY DESIGN We prospectively studied 436 healthy term infants from the Bern-Basel Infant Lung Development cohort. The breastfeeding status, and incidence and severity of respiratory symptoms (score) were assessed weekly by telephone interview during the first year of life. Risk factors (eg, pre- and postnatal smoking exposure, mode of delivery, gestational age, maternal atopy, and number of older siblings) were obtained using standardized questionnaires. Weekly measurements of particulate matter <10 μg were provided by local monitoring stations. The associations were investigated using generalized additive mixed model with quasi Poisson distribution. RESULTS Breastfeeding reduced the incidence and severity of the respiratory symptom score mainly in the first 27 weeks of life (risk ratio 0.70; 95% CI 0.55-0.88). We found a protective effect of breastfeeding in girls but not in boys. During the first 27 weeks of life, breastfeeding attenuated the effects of maternal smoking during pregnancy, gestational age, and cesarean delivery on respiratory symptoms. There was no evidence for an interaction between breastfeeding and maternal atopy, number of older siblings, child care attendance, or particulate matter <10 μg. CONCLUSIONS This study shows the risk-specific effect of breastfeeding on respiratory symptoms in early life using the comprehensive time-series approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To estimate the cost-effectiveness of prevention of mother-to-child transmission (MTCT) of HIV with lifelong antiretroviral therapy (ART) for pregnant and breastfeeding women ('Option B+') compared with ART during pregnancy or breastfeeding only unless clinically indicated ('Option B'). DESIGN Mathematical modelling study of first and second pregnancy, informed by data from the Malawi Option B+ programme. METHODS Individual-based simulation model. We simulated cohorts of 10 000 women and their infants during two subsequent pregnancies, including the breastfeeding period, with either Option B+ or B. We parameterized the model with data from the literature and by analysing programmatic data. We compared total costs of antenatal and postnatal care, and lifetime costs and disability-adjusted life-years of the infected infants between Option B+ and Option B. RESULTS During the first pregnancy, 15% of the infants born to HIV-infected mothers acquired the infection. With Option B+, 39% of the women were on ART at the beginning of the second pregnancy, compared with 18% with Option B. For second pregnancies, the rates MTCT were 11.3% with Option B+ and 12.3% with Option B. The incremental cost-effectiveness ratio comparing the two options ranged between about US$ 500 and US$ 1300 per DALY averted. CONCLUSION Option B+ prevents more vertical transmissions of HIV than Option B, mainly because more women are already on ART at the beginning of the next pregnancy. Option B+ is a cost-effective strategy for PMTCT if the total future costs and lost lifetime of the infected infants are taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several interactive parameters of protein-calorie malnutrition imposed during postnatal ontogeny on the myelination of rat brain wre investigated. Postnatal starvation depresses the rate of myelin protein synthesis to approximately the same extent in all major brain regions examined (cerebral cortex, cerebellum, striatum, hippocampus, hypothalamus, midbrain and medulla), indicating a relatively uniform reduction in myelination throughout the brain. Early starvation from birth through 8 days, as well as starvation occurring late, from 14 to 30 days, produced no lasting deficit in myelin accumulation. Starvation from birth through 14 days or from birth through 20 days produces lasting, significant myelin deficits in all brain regions when examined following ad libitum feeding to 60 days of age. These data, in combination with the metabolic studies of myelin synthesis, show that severe starvation occurring during the 2nd and 3rd weeks of postnatal life produces an immediate reduction in myelin synthesis, and that the subsequent deficit in myelin accumulation is irreversible by nutritional rehabilitation. With respect to the relative severity of nutritional restriction occurring during this "critical" interval of brain ontogeny, additional studies showed that mild undernourishment (producing less than 20 percent growth lag) produces no myelin deficit. There appears to be a threshold effect such that undernutrition producing a growth lag of between 20 to 30 percent first produces a measurable deficit. Increasingly severe regimens of nutritional restriction which produce approximately 30, 40 and 50 percent body weight lags result in initial myelin deficits of 25, 55 and 60 percent, respectively. Initial myelin deficits do not recover following nutritional rehabilitation, although myelin continues to increase in both normal and all undernourished populations. At the cellular level, severe postnatal nutritional restriction appears to depress both the initial synthesis of myelin precursor proteins (as demonstrated for proteolipid protein) as well as their subsequent assembly into myelin membrane. All of the findings of the present studies are consistent with a hypothetical model of undernutrition-induced brain hypomyelination in which the primary defect consists of a failure of oligodendroglia to myelinate a substantial percentage of axons, resulting in a greatly decreased ratio of myelinated to unmyelinated axons. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The differentiation of the reproductive organs is an essential developmental process required for the proper transmission of the genetic material. Müllerian inhibiting substance (MIS) is produced by testes and is necessary for the regression of the Müllerian ducts: the anlagen of the uterus, fallopian tubes and cervix. In vitro and standard transgenic mouse studies indicate that the nuclear hormone receptor Steroidogenic factor 1 (SF-1) and the transcription factor SOX9 play an essential role in the regulation of Mis. To test this hypothesis, mutations in the endogenous SF-1 and SOX9 binding sites in the mouse Mis promoter were introduced by gene targeting in embryonic stem (ES) cells. In disagreement with cell culture and transgenic mouse studies, male mice homozygous for the mutant SF-1 binding site correctly initiated Mis transcription in the fetal testes, although at significantly reduced levels. Surprisingly, sufficient Mis was produced for complete elimination of the Müllerian duct system. However, when the SF-1 binding site mutation was combined with an Mis -null allele, the further decrease in Mis levels led to a partial retention of uterine tissue, but only at a distance from the testes. In contrast, males homozygous for the mutant SOX9 binding site did not initiate Mis transcription, resulting in pseudohermaphrodites with a uterus and oviducts. These studies suggest an essential role for SOX9 in the initiation of Mis transcription, whereas SF-1 appears to act as a quantitative regulator of Mis transcript levels perhaps for influencing non-Müllerian duct tissues. ^ The Mis type II receptor, a member of the TGF- b superfamily, is also required for the proper regression of the Müllerian ducts. Mis type II receptor-deficient human males and their murine counterparts develop as pseudohermaphrodites. A lacZ reporter cassette was introduced into the mouse Mis type II receptor gene, by homologous recombination in ES cells. Expression studies, based on b -galactosidase activity, show marked expression of the MIS type II receptor in the postnatal Sertoli cells of the testis as well as in the prenatal and postnatal granulosa cells of the ovary. Expression is also seen in the mesenchymal cells surrounding the Müllerian duct and in the longitudinal muscle layer of the uterus. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vasculogenesis is the process by which Endothelial Precursor Cells (EPCs) form a vasculature. This process has been traditionally regarded as an embryological process of vessel formation. However, as early as in the 60's the concept of postnatal vasculogenesis was introduced, with a strong resurface of this idea in recent years. Similarly, previous work on a mouse skin tumor model provided us with the grounds to consider the role of vasculogenesis during tumor formation. ^ We examined the contribution of donor bone marrow (BM)-derived cells to neovascularization in recipient nude mice with Ewing's sarcoma. Ewing's sarcoma is a primitive neuroectodermal tumor that most often affects children and young adults between 5 and 30 years of age. Despite multiple attempts to improve the efficacy of chemotherapy for the disease, the 2-year metastases-free survival rate for patients with Ewing's sarcoma has not improved over the past 15 years. New therapeutic approaches are therefore needed to reduce the mortality rate. ^ The contribution of BM endothelial precursor cells in the development of Ewing's sarcoma was examined using different strategies to track the donor-derived cells. Using a BMT model that takes advantage of MHC differences between donor and recipient mice, we have found that donor BM cells were involved in the formation of Ewing's sarcoma vasculature. ^ Cells responsible for this vasculogenesis activity may be located within the stem cell population of the murine BM. These stem cells would not only generate the hematopoietic lineage but they would also generate ECs. Bone marrow SP (Side Population) cells pertain to a subpopulation that can be identified using flow cytometric analysis of Hoechst 33342-stained BM. This population of cells has HSC activity. We have tested the ability of BM SP cells to contribute to vasculogenesis in Ewing's sarcoma using our MHC mismatched transplant model. Mice transplanted with SP cells developed tumor neovessels that were derived from the donor SP cells. Thus, SP cells not only replenished the hematopoietic system of the lethally irradiated mice, but also differentiated into a non-hematopoietic cell lineage and contributed to the formation of the tumor vasculature. ^ In summary, we have demonstrated that BM-derived cells are involved in the generation of the new vasculature during the growth of Ewing's sarcoma. The finding that vasculogenesis plays a role in Ewing's sarcoma development opens the possibility of using genetically modified BM-derived cells for the treatment of Ewing's sarcomas. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human embryonic stem cells (hESCs) have the potential to differentiate to all adult somatic cells. This property makes hESCs a very promising area of research for the treatment of disorders in which specific cell populations need to be restored. Despite this potential, research that focuses on producing mesodermally derived cell populations from hESCs is decidedly limited, notwithstanding the prevalence of disorders involving mesodermal tissues for which treatment options are limited. Skeletal muscle myoblasts are derivatives of mesodermal cells and are characterized by the expression of the MyoD gene. These cells are difficult to obtain from hESCs in a reproducible and efficient manner. Recent developments in the field have showed some success in obtaining myogenic cells from hESCs through a mesenchymal stem cell (MSC)-like intermediate population. MSCs, which are an adult stem cell population typically derived from the bone marrow, are capable of generating multiple cell types including skeletal muscle. The aim of this study was to develop an efficient method that derives myoblasts from an MSC-like intermediate. To accomplish this goal, we first set out to isolate and expand the MSC-like intermediate from hESCs differentiated in vitro. Difficulties in reproducing published cell-differentiation methodologies, which represent a significant and familiar challenge in hESC research, are highlighted in this report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous genes expressed in placenta or testis localize to the X-chromosome. Both tissues undergo specialized X-chromosome inactivation (imprinted paternal inactivation in placenta and MSCI in testicular germ cells). When the X-chromosome is duplicated or improperly inactivated, defects in placentation, growth and spermatogenesis are noted, suggesting tight control of X-chromosome gene dosage is important for reproduction. ^ Esx1 is a mouse homeobox gene on the X-chromosome with expression limited to extraembryonic tissues and testicular germ cells. Here, we examine the effects of increased and decreased Esx1 dosage on placental and testicular development, the role of genetic background on Esx1 function and characterize the human orthologue of Esx1. ^ Previously, by targeted deletion, Esx1 was shown to be an X-chromosome imprinted regulator of placental development and fetal growth. We show C57Bl6-congenic Esx1 mutants display a more severe phenotype with decreased viability and that the 129 genetic background contains dominant modifier genes that enhance Esx1 mutant survival. ^ Varying Esx1 dosage impacts testicular germ cell development. Esx1 hemizygous null mice are fertile, but we show their testes are two-thirds normal size. To examine the effect of increased Esx1 dosage, Esx1 BAC transgenic mice were generated. Increased Esx1 dosage results in dramatic deficits in testicular germ cell development, leading to sterility and testes one-fourth normal size. We show germ cell loss occurs through apoptosis, begins between postnatal day 6 and 10, and that no spermatocytes complete meiosis. Interestingly, increased Esx1 dosage in testes mimics germ cell loss seen in Klinefelter's (XXY) mice and humans and may represent a molecular mechanism for the infertility characteristic of this syndrome. ^ Esx1 dosage impacts reproductive fitness when maternally transmitted. Three transgenic founder females were unable to transmit the transgene to live offspring, but did produce transgenic pups at earlier stages. Additionally, one line of Esx1 BAC transgenic mice demonstrated decreased embryo size and fitness when the transgene is inherited compared to wild type littermates. ^ It is possible that Esx1 plays a role in human disorders of pregnancy, growth and spermatogenesis. Therefore, we cloned and characterized ESX1L (human Esx1), and show it is expressed in human testis and placenta. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although mechanisms regulating the formation of embryonic skeletal muscle are well characterized, less is known about muscle formation in postnatal life. This disparity is unfortunate because the largest increases in skeletal muscle mass occur after birth. Adult muscle stem cells (satellite cells) appear to recapitulate the events that occur in embryonic myoblasts. In particular, the myogenic basic helix-loop-helix factors, which have crucial functions in embryonic muscle development, are assumed to have similar roles in postnatal muscle formation. Here, I test this assumption by determining the role of the myogenic regulator myogenin in postnatal life. Myogenin-null mice die at birth, necessitating the generation of floxed alleles of myogenin and the use of cre-recombinase lines to delete myogenin. Removing myogenin before embryonic muscle development resulted in myofiber deficiencies identical to those observed in myogenin-null mice. However, mice in which myogenin was deleted following embryonic muscle development had normal skeletal muscle, except for modest alterations in MRF4 and MyoD expression. Notably, myogenin-deleted mice were 30% smaller than controls, suggesting that myogenin's absence disrupted general body growth. These results suggest that skeletal muscle growth in postnatal life is controlled by mechanisms distinct from those occurring in embryonic muscle development. ^