981 resultados para PNSACV Marine Park


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA’s National Centers for Coastal Ocean Science Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively and qualitatively compare marine ecosystems in tropical U.S. waters. The Biogeography Branch used similar protocols to generate new benthic habitat maps for Fish Bay, Coral Bay and the St. Thomas East End Reserve (STEER). While this mapping effort marks the third time that some of these shallow-water habitats (≤40 m) have been mapped, it is the first time that nearly 100% of the seafloor has been characterized in each of these areas. It is also the first time that high resolution imagery describing seafloor depth has been collected in each of these areas. Consequently, these datasets provide new information describing the distribution of coral reef ecosystems and serve as a spatial baseline for monitoring change in the Fish Bay, Coral Bay and the STEER. Benthic habitat maps were developed for approximately 64.3 square kilometers of seafloor in and around Fish Bay, Coral Bay and the STEER. Twenty seven percent (17.5 square kilometers) of these habitat maps describe the seafloor inside the boundaries of the STEER, the Virgin Islands National Park and the Virgin Islands Coral Reef National Monument. The remaining 73% (46.8 square kilometers) describe the seafloor outside of these MPA boundaries. These habitat maps were developed using a combination of semi-automated and manual classification methods. Habitats were interpreted from aerial photographs and LiDAR (Light Detection and Ranging) imagery. In total, 155 distinct combinations of habitat classes describing the geology and biology of the seafloor were identified from the source imagery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA’s National Centers for Coastal Ocean Science (NCCOS)-Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch, National Park Service (NPS), US Geological Survey, and the University of Hawaii used acoustic telemetry to quantify spatial patterns and habitat affinities of reef fishes around the island of St. John, US Virgin Islands. The objective of the study was to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef National Monument (VICRNM), the Virgin Islands National Park (VIIS), and Territorial waters surrounding St. John. In order to better understand species’ habitat utilization patterns among management regimes, we deployed an array of hydroacoustic receivers and acoustically tagged reef fishes. Thirty six receivers were deployed in shallow near-shore bays and across the shelf to depths of approximately 30 m. One hundred eighty four individual fishes were tagged representing 19 species from 10 different families with VEMCO V9-2L-R64K transmitters. The array provides fish movement information at fine (e.g., day-night and 100s meters within a bay) to broad spatial and temporal scales (multiple years and 1000s meters across the shelf). The long term multi-year tracking project provides direct evidence of connectivity across habitat types in the seascape and among management units. An important finding for management was that a number of individuals moved among management units (VICRNM, VINP, Territorial waters) and several snapper moved from near-shore protected areas to offshore shelf-edge spawning aggregations. However, most individuals spent the majority of their time with VIIS and VICRNM, with only a few wide-ranging species moving outside the management units. Five species of snappers (Lutjanidae) accounted for 31% of all individuals tagged, followed by three species of grunts (Haemulidae) accounting for an additional 23% of the total. No other family had more than a single species represented in the study. Bluestripe grunt (Haemulon sciurus) comprised 22% of all individuals tagged, followed by lane snappers (Lutjanus synagris) at 21%, bar jack (Carangoides ruber) at 11%, and saucereye porgy (Calamus calamus) at 10%. The largest individual tagged was a 70 cm TL nurse shark (Ginglymostoma cirratum), followed by a 65 cm mutton snapper (Lutjanus analis), a 47 cm bar jack, and a 41 cm dog snapper (Lutjanus jocu). The smallest individuals tagged were a 19 cm blue tang (Acanthurus coeruleus) and a 19.2 cm doctorfish (Acanthurus chirurgus). Of the 40 bluestriped grunt acoustically tagged, 73% were detected on the receiver array. The average days at large (DAL) was 249 (just over 8 months), with one individual detected for 930 days (over two and a half years). Lane snapper were the next most abundant species tagged (N = 38) with 89% detected on the array. The average days at large (DAL) was 221 with one individual detected for 351 days. Seventy-one percent of the bar jacks (N = 21) were detected on the array with the average DALs at 47 days. All of the mutton snapper (N = 12) were detected on the array with an average DAL of 273 and the longest at 784. The average maximum distance travelled (MDT) was ca. 2 km with large variations among species. Grunts, snappers, jacks, and porgies showed the greatest movements. Among all individuals across species, there was a positive and significant correlation between size of individuals and MDT and between DAL and MDT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tortugas Integrated Biogeographic Assessment presents a unique analysis of demographic changes in living resource populations, as well as societal and socioeconomic benefits that resulted from the Tortugas Ecological Reserves during the first five years after their implementation. In 2001, state and federal agencies established two no-take reserves within the region as part of the Florida Keys National Marine Sanctuary. The northern reserve (Tortugas Ecological Reserve North) was established adjacent to the Dry Tortugas National Park, which was first declared a national monument in 1935. The reserves were designed to protect a healthy coral reef ecosystem that supports diverse faunal assemblages and fisheries, serves as important spawning grounds for groupers and snappers, and includes essential feeding and breeding habitats for seabirds. The unique ecological qualities of the Tortugas region were recognized as far back as 1850, and it remains an important ecosystem and research area today. The two main goals of the Tortugas Ecological Reserve Integrated Ecological Assessment were: 1) to determine if demographic changes such as increases in abundance, average size and spawning potential of exploited populations occurred in the Tortugas region after reserve implementation; and 2) whether short-term economic losses occurred to fishers displaced by the reserve. This project utilized a biogeographic approach in which information on the physical features (i.e., habitat) and oceanographic patterns were first used to determine the spatial distribution of selected fish populations within and outside the Tortugas Ecological Reserve. Before-and-after reserve implementation comparisons of selected fish populations were then conducted to determine if demographic changes occurred in reef fish assemblages. These comparisons were done for the Tortugas region and also for a subset of available habitats within the Tortugas Ecological Reserve Study Area. Social and economic impacts of the reserves were determined through: 1) analyses of commercial landings and revenues from fishers, operating in the Tortugas region before and after reserve implementation and 2) surveys of recreational tour guides. Analyses of the commercial landings and revenues excluded areas inside Dry Tortugas National Park because commercial fishing has been prohibited within park boundaries since 1992. Key findings and outcomes of this integrated ecological assessment are organized by chapter and listed below.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in development of offshore renewable energy facilities has led to a need for high-quality, statistically robust information on marine wildlife distributions. A practical approach is described to estimate the amount of sampling effort required to have sufficient statistical power to identify species specific “hotspots” and “coldspots” of marine bird abundance and occurrence in an offshore environment divided into discrete spatial units (e.g., lease blocks), where “hotspots” and “coldspots” are defined relative to a reference (e.g., regional) mean abundance and/or occurrence probability for each species of interest. For example, a location with average abundance or occurrence that is three times larger the mean (3x effect size) could be defined as a “hotspot,” and a location that is three times smaller than the mean (1/3x effect size) as a “coldspot.” The choice of the effect size used to define hot and coldspots will generally depend on a combination of ecological and regulatory considerations. A method is also developed for testing the statistical significance of possible hotspots and coldspots. Both methods are illustrated with historical seabird survey data from the USGS Avian Compendium Database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecological integrity of coral reef ecosystems in the U.S. Caribbean is widely considered to have deteriorated in the last three decades due to a range of threats and stressors from both human and non-human processes Rothenberger 2008, Wilkinson 2008). In response to the threats to Caribbean coral reef ecosystems and other regions around the world, the United States Government authorized the Coral Reef Conservation Act of 2000 to: (1) preserve, sustain, and restore the condition of coral reef ecosystems; (2) promote the wise management and sustainable use of coral reef ecosystems to benefit local communities and the Nation; and (3) develop sound scientific information on the condition of coral reef ecosystems and the threats to such ecosystems. The Act also resulted in the formation of a National Coral Reef Action Strategy and a Coral Reef Conservation Program. The Action Strategy (Goal 2 of Action Theme 1) outlined the importance of monitoring and assessing coral reef health as a mechanism toward reducing many threats to these ecosystems. Monitoring was considered of high importance in addressing impacts from climate change; disease; overfishing; destructive fishing practices; habitat destruction; invasive species; coastal development; coastal pollution; sedimentation/runoff and overuse from tourism. The strategy states that successful coral reef ecosystem conservation requires adaptive management that responds quickly to changing environmental conditions. This, in turn, depends on monitoring programs that track trends in coral reef ecosystem health and reveal patterns in their condition before irreparable harm occurs. As such, monitoring plays a vital role in guiding and supporting the establishment of complex or potentially controversial management strategies such as no-take ecological reserves, fishing gear restrictions, or habitat restoration, by documenting the impacts of gaps in existing management schemes and illustrating the effectiveness of new measures over time. Long-term monitoring is also required to determine the effectiveness of various management strategies to conserve and enhance coral reef ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In June 2008, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters within the boundaries of Stellwagen Bank National Marine Sanctuary (SBNMS). The sanctuary lies approximately 20 nautical miles east of Boston, MA in the southwest Gulf of Maine between Cape Ann and Cape Cod and encompassing 638 square nautical miles (2,181 km2). A total of 30 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Depths ranged from 31 – 137 m throughout the study area. About 76 % of the area had sediments composed of sands (< 20 % silt-clay), 17 % of the area was composed of intermediate muddy sands (20 – 80 % silt-clay), and 7 % of the sampled area consisted of mud (> 80 % siltclay). About 70 % of the area (represented by 21 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all but one site (located in Stellwagen Basin) had levels of TOC < 20 mg/g, which is well below the range potentially harmful to benthic fauna (> 50 mg/g). Surface salinities ranged from 30.6 – 31.5 psu, with the majority of the study region (approximately 80 % of the area) having surface salinities between 30.8 and 31.4 psu. Bottom salinities varied between 32.1 and 32.5 psu, with bottom salinities at all sites having values above the range of surface salinities. Surface-water temperatures varied between 12.1 and 16.8 ºC, while near-bottom waters ranged in temperature from 4.4 – 6.2 ºC. An index of density stratification (Δσt) indicated that the waters of SBNMS were stratified at the time of sampling. Values of Δσt at 29 of the 30 sites sampled in this study (96.7 % of the study area) varied from 2.1 – 3.2, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2) and typical of the western Gulf of Maine in summer. Levels of dissolved oxygen (DO) were confined to a fairly narrow range in surface (8.8 – 10.4 mg/L) and bottom (8.5 – 9.6 mg/L) waters throughout the survey area. These levels are within the range considered indicative of good water quality (> 5 mg/L) with respect to DO. None of these waters had DO at low levels (< 2 mg/L) potentially harmful to benthic fauna and fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine protected areas (MPAs) represent a form of spatial management, and geospatial information on living marine resources and associated habitat is extremely important to support best management practices in a spatially discrete MPA. Benthic habitat maps provide georeferenced information on the geomorphic structure and biological cover types in the marine environment. This information supports an enhanced understanding of ecosystem function and species habitat utilization patterns. Benthic habitat maps are most useful for marine management and spatial planning purposes when they are created at a scale that is relevant to management actions. We sought to improve the resolution of existing benthic habitat maps created during a regional mapping effort in Hawai`i. Our results complemented these existing regional maps and provided more detailed, finer-scale habitat maps for a network of MPAs in West Hawai`i. The map products created during this study allow local planners and managers to extract information at a spatial scale relevant to the discrete management units, and appropriate for local marine management efforts on the Kona Coast. The resultant benthic habitat maps were integrated in a geographic information system (GIS) that also included aerial imagery, underwater video, MPA regulations, summarized ecological data and other relevant and spatially explicit information. The integration of the benthic habitat maps with additional “value added” geospatial information into a dynamic GIS provide a decision support tool with pertinent marine resource information available in one central location and support the application of a spatial approach to the management of marine resources. Further, this work can serve as a case study to demonstrate the integration of remote sensing products and GIS tools at a fine spatial scale relevant to local-level marine spatial planning and management efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine protected areas (MPAs) are important tools for management of marine ecosystems. While desired, ecological and biological criteria are not always feasible to consider when establishing protected areas. In 2001, the Virgin Islands Coral Reef National Monument (VICR) in St. John, US Virgin Islands was established by Executive Order. VICR boundaries were based on administrative determination of Territorial Sea boundaries and land ownership at the time of the Territorial Submerged Lands Act of 1974. VICR prohibits almost all fishing and other extractive uses. Surveys of habitat and fishes inside and outside of VICR were conducted in 2002-07. Based on these surveys, areas outside VICR had significantly more hard corals; greater habitat complexity; and greater richness, abundance and biomass of reef fishes than areas within VICR, further supporting results from 2002-2004 (Monaco et al., 2007). The administrative (political) process used to establish VICR did not allow a robust ecological characterization of the area to determine the boundaries of the MPA. Efforts are underway to increase amounts of complex reef habitat within VICR by swapping a part of VICR that has little coral reef habitat for a Territorially-owned area within VICR that contains a coral reef with higher coral cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the 1940s, portions of the Island of Vieques, Puerto Rico have been used by the United States Navy (USN) as an ammunition support detachment and bombing and maneuver training range. In April 2001, the USN began phasing out military activities on the island and transferring military property to the U.S. Department of the Interior, the Municipality of Vieques, and the Puerto Rico Conservation Trust. A small number of studies have been commissioned by the USN in the past few decades to assess selected components of the coral reef ecosystem surrounding the island; however, these studies were generally of limited geographic scope and short duration. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with NOAA’s Office of Response and Restoration (OR&R) and other local and regional experts, conducted a more comprehensive characterization of coral reef ecosystems, contaminants, and nutrient distribution patterns around Vieques. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems in Vieques and other locations in the region. This characterization of Vieques’ marine ecosystems consists of a two part series. First, available information on reefs, fish, birds, seagrasses, turtles, mangroves, climate, geology, currents, and human uses from previous studies was gathered and integrated into a single document comprising Part I of this two part series (Bauer et al. 2008). For Part II of the series, presented in this document, new field studies were conducted to fill data gaps identified in previous studies, to provide an island-wide characterization, and to establish baseline values for the distribution of habitats, nutrients, contaminants, fish, and benthic communities. An important objective underlying this suite of studies was to quantify any differences in the marine areas adjacent to the former and current land-use zoning around Vieques. Specifically of interest was the possibility that either Naval (e.g., practice bombing, munitions storage) or civilian activities (e.g., sewage pollutants, overfishing) could have a negative impact on adjacent marine resources. Measuring conditions at this time and so recently after the land transfer was essential because present conditions are likely to be reflective of past land-use practices. In addition, the assessment will establish benchmark conditions that can be influenced by the potentially dramatic future changes in land-use practices as Vieques considers its development. This report is organized into seven chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the island setting, the former and current land-use zoning, and how the land zoning was used to spatially stratify much of the sampling. Chapter 2 is focused on benthic mapping and provides the methods, accuracy assessment, and results of newly created benthic maps for Vieques. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities on hardbottom habitats around the island. Chapter 4 presents results of flora and fauna surveys in selected bays and lagoons. Chapter 5 examines the distribution of nutrients in lagoons, inshore, and offshore waters around the island. Chapter 6 is focused on the distribution of chemical contaminants in sediments and corals. Chapter 7 is a brief summary discussion that highlights key findings of the entire suite of studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the 1940s until 2003, portions of the island of Vieques, a municipality within the Commonwealth of Puerto Rico, were used by the US Navy as a base and training facility, resulting in development and zoning history that differ in comparison to other Caribbean islands. The majority of former Navy lands are now under the jurisdiction of the Department of the Interior’s Fish and Wildlife Service as a National Wildlife Refuge, while a smaller percentage of land was transferred to the Vieques municipality and the Puerto Rico Conservation Trust. An analysis of the distribution and status of the marine resources is timely in light of the recent land transfer, increases in development and tourism, and potential changes in marine zoning around the island. To meet this need, NOAA’s Biogeography Branch, in cooperation with the Office of Response and Restoration and other local and regional partners, conducted Part I of an ecological characterization to integrate historical data and research into a synthesis report. The overall objective of this report is to provide resource managers and residents a comprehensive characterization of the marine resources of Vieques to support research, monitoring, and management. For example, knowledge of the spatial distribution of physical features, habitats, and biological communities is necessary to make an informed decision of the establishment and placement of a marine protected area (MPA). The report is divided into chapters based on the physical environment (e.g., climate, geology, bathymetry), habitat types (e.g., reefs and hardbottom, seagrasses, mangroves) and major faunal groups (e.g. fish, turtles, birds). Each section includes five subsections: an overview, description of the relevant literature, methods of analysis, information on the distribution, status and trends of the particular resource, and a discussion of ecological linkages with other components of the Vieques marine ecosystem and surrounding environment. The physical environment of Vieques is similar to other islands within the Greater Antilles chain, with some distinctions. The warm, tropical climate of Vieques, mediated by the northeasterly trade winds, is characterized by a dry season (December-April) and a rainy season (May-November), the latter of which is characterized by the occasional passage of tropical cyclones. Compared to mainland Puerto Rico, Vieques is characterized by lower elevation, less annual precipitation, and higher average temperatures. The amount of annual precipitation also varies spatially within Vieques, with the western portion of the island receiving higher amounts of rainfall than further east. While the North Equatorial Current dominates the circulation pattern in the Greater Antilles region, small scale current patterns specific to Vieques are not as well characterized. These physical processes are important factors mitigating the distribution and composition of marine benthic habitats around Vieques. In general, the topography of Vieques is characterized by rolling hills. Mt. Pirata, the tallest point at 301 m, is located near the southwest coast. In the absence of island wide sedimentation measurements, information on land cover, slope, precipitation, and soil type were used to estimate relative erosion potential and sediment delivery for each watershed. While slope and precipitation amount are the primary driving factors controlling runoff, land use practices such as urban development, military activity, road construction, and agriculture can increase the delivery of pollution and sediments to coastal waters. Due to the recent land transfer, increased development and tourism is expected, which may result in changes in the input of sediments to the coastal environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hawaii’s coastal marine resources have declined dramatically over the past 100 years due to multiple anthropogenic stressors including overfishing, coastal development, pollution, overuse, invasive species and climate change. It is now becoming evident that ecosystem-based management, in the form of marine protected areas (MPAs), is necessary to conserve biodiversity, maintain viable fisheries, and deliver a broad suite of ecosystem services. Over the past four decades, Hawaii has developed a system of MPAs to conserve and replenish marine resources around the state. These Marine Life Conservation Districts (MLCDs) vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Branch used digital benthic habitat maps coupled with comprehensive ecological studies between 2002 and 2004 to evaluate the efficacy of all existing MLCDs using a spatially-explicit stratified random sampling design. The results from this work have shown that areas fully protected from fishing had higher fish biomass, larger overall fish size, and higher biodiversity than adjacent areas of similar habitat quality. Other key findings demonstrated that top predators and other important fisheries species were more abundant and larger in the MPAs, illustrating the effectiveness of these closures in conserving these populations. Habitat complexity, protected area size and habitat diversity were the major factors in determining effectiveness among MPAs.