980 resultados para PM3 calculations


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde- Ramo de especialização: Terapia com Radiações

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil Área de Especialização em Estruturas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim - To use Monte Carlo (MC) together with voxel phantoms to analyze the tissue heterogeneity effect in the dose distributions and equivalent uniform dose (EUD) for (125)I prostate implants. Background - Dose distribution calculations in low dose-rate brachytherapy are based on the dose deposition around a single source in a water phantom. This formalism does not take into account tissue heterogeneities, interseed attenuation, or finite patient dimensions effects. Tissue composition is especially important due to the photoelectric effect. Materials and Methods - The computed tomographies (CT) of two patients with prostate cancer were used to create voxel phantoms for the MC simulations. An elemental composition and density were assigned to each structure. Densities of the prostate, vesicles, rectum and bladder were determined through the CT electronic densities of 100 patients. The same simulations were performed considering the same phantom as pure water. Results were compared via dose-volume histograms and EUD for the prostate and rectum. Results - The mean absorbed doses presented deviations of 3.3-4.0% for the prostate and of 2.3-4.9% for the rectum, when comparing calculations in water with calculations in the heterogeneous phantom. In the calculations in water, the prostate D 90 was overestimated by 2.8-3.9% and the rectum D 0.1cc resulted in dose differences of 6-8%. The EUD resulted in an overestimation of 3.5-3.7% for the prostate and of 7.7-8.3% for the rectum. Conclusions - The deposited dose was consistently overestimated for the simulation in water. In order to increase the accuracy in the determination of dose distributions, especially around the rectum, the introduction of the model-based algorithms is recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MCNPX code was used to calculate the TG-43U1 recommended parameters in water and prostate tissue in order to quantify the dosimetric impact in 30 patients treated with (125)I prostate implants when replacing the TG-43U1 formalism parameters calculated in water by a prostate-like medium in the planning system (PS) and to evaluate the uncertainties associated with Monte Carlo (MC) calculations. The prostate density was obtained from the CT of 100 patients with prostate cancer. The deviations between our results for water and the TG-43U1 consensus dataset values were -2.6% for prostate V100, -13.0% for V150, and -5.8% for D90; -2.0% for rectum V100, and -5.1% for D0.1; -5.0% for urethra D10, and -5.1% for D30. The same differences between our water and prostate results were all under 0.3%. Uncertainties estimations were up to 2.9% for the gL(r) function, 13.4% for the F(r,θ) function and 7.0% for Λ, mainly due to seed geometry uncertainties. Uncertainties in extracting the TG-43U1 parameters in the MC simulations as well as in the literature comparison are of the same order of magnitude as the differences between dose distributions computed for water and prostate-like medium. The selection of the parameters for the PS should be done carefully, as it may considerably affect the dose distributions. The seeds internal geometry uncertainties are a major limiting factor in the MC parameters deduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To analyze spatial changes in the risk of AIDS and the relationship between AIDS incidence and socioeconomic variables in the state of Rondonia, Amazon region. METHODS A spatial, population case-control study in Rondonia, Brazil, based on 1,780 cases reported to the Epidemiological Surveillance System and controls based on demographic data from 1987 to 2006. The cases were grouped into five consecutive four-year periods. A generalized additive model was adjusted to the data; the dependent variable was the status of the individuals (case or control), and the independent variables were a bi-dimensional spline of the geographic coordinates and some municipality-level socioeconomic variables. The observed values of the Moran’s I test were compared to a reference distribution of values generated under conditions of spatial randomness. RESULTS AIDS risk shows a marked spatial and temporal pattern. The disease incidence is related to socioeconomic variables at the municipal level in Rondônia, such as urbanization and human capital. The highest incidence rates of AIDS are in municipalities along the BR-364 highway and calculations of the Moran’s I test show positive spatial correlation associated with proximity of the municipality to the highway in the third and fourth periods (p = 0.05). CONCLUSIONS Incidence of the disease is higher in municipalities of greater economic wealth and urbanization, and in those municipalities bisected by Rondônia’s main roads. The rapid development associated with the opening up of once remote regions may be accompanied by an increase in these risks to health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The National Cancer Institute (NCI) method allows the distributions of usual intake of nutrients and foods to be estimated. This method can be used in complex surveys. However, the user must perform additional calculations, such as balanced repeated replication (BRR), in order to obtain standard errors and confidence intervals for the percentiles and mean from the distribution of usual intake. The objective is to highlight adaptations of the NCI method using data from the National Dietary Survey. The application of the NCI method was exemplified analyzing the total energy (kcal) and fruit (g) intake, comparing estimations of mean and standard deviation that were based on the complex design of the Brazilian survey with those assuming simple random sample. Although means point estimates were similar, estimates of standard error using the complex design increased by up to 60% compared to simple random sample. Thus, for valid estimates of food and energy intake for the population, all of the sampling characteristics of the surveys should be taken into account because when these characteristics are neglected, statistical analysis may produce underestimated standard errors that would compromise the results and the conclusions of the survey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2003) 8: 777–786

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil, na Área de Especialização de Hidráulica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Floating-point computing with more than one TFLOP of peak performance is already a reality in recent Field-Programmable Gate Arrays (FPGA). General-Purpose Graphics Processing Units (GPGPU) and recent many-core CPUs have also taken advantage of the recent technological innovations in integrated circuit (IC) design and had also dramatically improved their peak performances. In this paper, we compare the trends of these computing architectures for high-performance computing and survey these platforms in the execution of algorithms belonging to different scientific application domains. Trends in peak performance, power consumption and sustained performances, for particular applications, show that FPGAs are increasing the gap to GPUs and many-core CPUs moving them away from high-performance computing with intensive floating-point calculations. FPGAs become competitive for custom floating-point or fixed-point representations, for smaller input sizes of certain algorithms, for combinational logic problems and parallel map-reduce problems. © 2014 Technical University of Munich (TUM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.