974 resultados para Organophosphate induced delayed neuropathy
Resumo:
Nanoindentation and scratch experiments on 1:1 donor-acceptor complexes, 1 and 2, of 1,2,4,5-tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long-range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile-up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 ) and hardness (16 ) demonstrate the anisotropic nature of crystal packing. In 2, the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C-H�N hydrogen bonds and ��� interactions. This results in a higher modulus (20 ) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 ). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2. A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The thermally evaporated amorphous Sb40Se20S40 thin film of 800 nm thickness was subjected to light exposure for photo induced studies. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra supports the optical changes happening in the film due to light exposure.
Resumo:
We study electronic transport across a helical edge state exposed to a uniform magnetic ((B) over right arrow) field over a finite length. We show that this system exhibits Fabry-Perot-type resonances in electronic transport. The intrinsic spin anisotropy of the helical edge states allows us to tune these resonances by changing the direction of the (B) over right arrow field while keeping its magnitude constant. This is in sharp contrast to the case of nonhelical one-dimensional electron gases with a parabolic dispersion, where similar resonances do appear in individual spin channels (up arrow and down arrow) separately which, however, cannot be tuned by merely changing the direction of the (B) over right arrow field. These resonances provide a unique way to probe the helical nature of the theory. We study the robustness of these resonances against a possible static impurity in the channel.
Resumo:
Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/ mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/-) mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnf alpha and Ifn gamma in sera are not significantly affected, Nos2(-/-) mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.
Resumo:
Detecting and quantifying the presence of human-induced climate change in regional hydrology is important for studying the impacts of such changes on the water resources systems as well as for reliable future projections and policy making for adaptation. In this article a formal fingerprint-based detection and attribution analysis has been attempted to study the changes in the observed monsoon precipitation and streamflow in the rain-fed Mahanadi River Basin in India, considering the variability across different climate models. This is achieved through the use of observations, several climate model runs, a principal component analysis and regression based statistical downscaling technique, and a Genetic Programming based rainfall-runoff model. It is found that the decreases in observed hydrological variables across the second half of the 20th century lie outside the range that is expected from natural internal variability of climate alone at 95% statistical confidence level, for most of the climate models considered. For several climate models, such changes are consistent with those expected from anthropogenic emissions of greenhouse gases. However, unequivocal attribution to human-induced climate change cannot be claimed across all the climate models and uncertainties in our detection procedure, arising out of various sources including the use of models, cannot be ruled out. Changes in solar irradiance and volcanic activities are considered as other plausible natural external causes of climate change. Time evolution of the anthropogenic climate change ``signal'' in the hydrological observations, above the natural internal climate variability ``noise'' shows that the detection of the signal is achieved earlier in streamflow as compared to precipitation for most of the climate models, suggesting larger impacts of human-induced climate change on streamflow than precipitation at the river basin scale.
Resumo:
S100A2, an EF hand calcium-binding protein, is a potential biomarker in several cancers and is also a TGF-beta (transforming growth factor-beta)-regulated gene in melanoma and lung cancer cells. However, the mechanism of S100A2 regulation by TGF-beta and its significance in cancer progression remains largely unknown. In the present study we report the mechanism of S100A2 regulation by TGF-beta and its possible role in TGF-beta-mediated tumour promotion. Characterization of the S100A2 promoter revealed an AP-1 (activator protein-1) element at positions -1161 to -1151 as being the most critical factor for the TGF-beta 1 response. Chromatin immunoprecipitation and electrophoretic mobility-shift assays confirmed the functional binding of the AP-1 complex, predominantly JunB, to the S100A2 promoter in response to TGF-beta 1 in HaCaT keratinocytes. JunB overexpression markedly stimulated the S100A2 promoter which was blocked by the dominant-negative JunB and MEK1 MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 1] inhibitor, PD98059. Intriguingly, despite the presence of a putative SMAD-binding element, S100A2 regulation by TGF-beta 1 was found to be SMAD3 independent. Interestingly, p53 protein and TGF-beta 1 show synergistic regulation of the S100A2 promoter. Finally, knockdown of S100A2 expression compromised TGF-beta 1-induced cell migration and invasion of Hep3B cells. Together our findings highlight an important link between the TGF-beta 1-induced MAPK and p53 signalling pathways in the regulation of S100A2 expression and pro-tumorigenic actions.
Resumo:
A lightning strike in the neighborhood can induce significant currents in tall down conductors. Though the magnitude of induced current in this case is much smaller than that encountered during a direct strike, the probability of occurrence and the frequency content is higher. In view of this, appropriate knowledge on the characteristics of such induced currents is relevant for the scrutiny of the recorded currents and in the evaluation of interference to the electrical and electronic system in the vicinity. Previously, a study was carried out on characteristics of induced currents assuming ideal conditions, that there were no influencing objects in the vicinity of the down conductor and channel. However, some influencing conducting bodies will always be present, such as trees, electricity and communication towers, buildings, and other elevated objects that can affect the induced currents in a down conductor. The present work is carried out to understand the influence of nearby conducting objects on the characteristics of induced currents due to a strike to ground in the vicinity of a tall down conductor. For the study, an electromagnetic model is employed to model the down conductor, channel, and neighboring conducting objects, and Numerical Electromagnetic Code-2 is used for numerical field computations. Neighboring objects of different heights, of different shapes, and at different locations are considered. It is found that the neighboring objects have significant influence on the magnitude and nature of induced currents in a down conductor when the height of the nearby conducting object is comparable to that of the down conductor.
Resumo:
The synthesis, hydrogelation, and aggregation-induced emission switching of the phenylenedivinylene bis-N-octyl pyridinium salt is described. Hydrogelation occurs as a consequence of pi-stacking, van der Waals, and electrostatic interactions that lead to a high gel melting temperature and significant mechanical properties at a very low weight percentage of the gelator. A morphology transition from fiber-to-coil-to-tube was observed depending on the concentration of the gelator. Variation in the added salt type, salt concentrations, or temperature profoundly influenced the order of aggregation of the gelator molecules in aqueous solution. Formation of a novel chromophore assembly in this way leads to an aggregation-induced switch of the emission colors. The emission color switches from sky blue to white to orange depending upon the extent of aggregation through mere addition of external inorganic salts. Remarkably, the salt effect on the assembly of such cationic phenylenedivinylenes in water follow the behavior predicted from the well-known Hofmeister effects. Mechanistic insights for these aggregation processes were obtained through the counterion exchange studies. The aggregation-induced emission switching that leads to a room-temperature white-light emission from a single chromophore in a single solvent (water) is highly promising for optoelectronic applications.
Resumo:
Polypyridyl platinum(II) complexes (1-5), viz., Pt(pyphen)Cl]Cl (1), Pt(pyphen)(C CFc)]Cl (2), Pt(pydppz)Cl]Cl (3), Pt(pydppz)(C CPh)]Cl (4) and Pt(pydppz)(C CFc)]Cl (5), where pyphen is 6-(2-pyridyl)-1,10-phenanthroline, pydppz is 6-(2-pyridyl)-dipyrido-3,2-a:2',3'-c]-phenazine, FcC CH is ferrocenyl acetylene and PhC CH is phenyl acetylene, were synthesized, characterized and their DNA binding and photocytotoxic properties studied. The complexes showed strong binding affinity to calf-thymus DNA giving K-app of similar to 10(6)-10(7) M-1. Complexes 4 and 5 showed dual mode of binding to ct-DNA. The pydppz complexes 3-5 having a photoactive phenazine moiety showed photocytotoxicity in HeLa and MCF-7 cells in UV-A light of 365 nm with apoptotic cell death as evidenced from the acridine orange/ethidium bromide dual staining and the FACS data. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
We present a detailed study on the behavior of vinylcyclopropanes as masked donor acceptor system toward the stereoselective synthesis of Z-alkylidenetetrahydrofurans. Results of bromenium catalyzed indirect activation of C-C bond of vinylcyclopropanes and concomitant cyclization to alkylidenetetrahydrofuran and other heterocycles have been discussed. The stereoselective formation of the Z-isomer is strongly controlled by the extent of destabilization of one of the gauche conformers of the vinylcyclopropane. The ring-opening/cyclization step was found to be stereospecific as in the case of DA cyclopropanes. The activation of the C-C bond leads to a tight-carbocation intermediate, which is evident from the complete retention of the stereochemistry. The retention of configuration has been established by a necessary control experiment that rules out the possibility of a double inversion pathway. The present results serve as direct stereochemical evidence in support of a tight ion-pair intermediate versus the controversial S(N)2 pathway. A 2D potential energy scan has been carried out at B3LYP/6-31G(d) level theory to obtain the relative energies of the conformers. The Z-selectivity observed has been explained on the basis of the relative population of the conformers and modeling the intermediate and transition state involved in the reaction at M06-2x/6-31+G(d) level. Energy profile for the cyclization step was modeled considering various possible pathways through which cyclization can happen. The methodology has been successfully demonstrated on vinylcyclobutanes as well.
Resumo:
Electric current can induce long-range flow of liquid metals over a conducting substrate. This work reports on the effect of the substrate surface roughness on the liquid metal-front velocity during such a flow. Experiments were conducted by passing electric current through liquid gallium placed over similar to 170 nm thick, 500 mu m wide gold and platinum films of varying roughness. The ensuing flow, thus, resembles micro-fluidics behavior in an open-channel. The liquid-front velocity decreased linearly with the substrate surface roughness; this is attributed to the reduction in the effective electric field along the liquid metal-substrate interface with the substrate surface roughness. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790182]
Resumo:
We report on the monotonic increase and the oscillation of electrical conductance in multiwalled carbon nanotubes with compressive strain. Combined experimental and theoretical analyses confirm that the conductance variation with strain is because of the transition from sp(2) to configurations that are promoted by the interaction of walls in the nanotubes. The intrawall interaction is the reason for the monotonic increase in the conduction, while the oscillations are attributable to interwall interactions. This explains the observed electromechanical oscillation in multiwalled nanotubes and its absence in single-walled nanotubes, thereby resolving a long-standing debate on the interpretation of these results. Moreover, the current carrying capability of nanotubes can be enhanced significantly by controlling applied strains. DOI: 10.1103/PhysRevLett.110.095504
Resumo:
The nontrivial electronic topology of a topological insulator is thus far known to display signatures in a robust metallic state at the surface. Here, we establish vibrational anomalies in Raman spectra of the bulk that signify changes in electronic topology: an E-g(2) phonon softens unusually and its linewidth exhibits an asymmetric peak at the pressure induced electronic topological transition (ETT) in Sb2Se3 crystal. Our first-principles calculations confirm the electronic transition from band to topological insulating state with reversal of parity of electronic bands passing through a metallic state at the ETT, but do not capture the phonon anomalies which involve breakdown of adiabatic approximation due to strongly coupled dynamics of phonons and electrons. Treating this within a four-band model of topological insulators, we elucidate how nonadiabatic renormalization of phonons constitutes readily measurable bulk signatures of an ETT, which will facilitate efforts to develop topological insulators by modifying a band insulator. DOI: 10.1103/PhysRevLett.110.107401
Resumo:
The telecommunication, broadcasting and other instrumented towers carry power and/or signal cables from their ground end to their upper regions. During a direct hit to the tower, significant induction can occur to these mounted cables. In order to provide adequate protection to the equipments connected to them, protection schemes have been evolved in the literature. Development of more effective protection schemes requires a quantitative knowledge on various parameters. However, such quantitative knowledge is difficult to find at present. Amongst several of these aspects, the present work aims to investigate on the two important aspects: (i) what would be the nature of the induced currents and (ii) what will be the current sharing if as per the practice, the sheath of the cable is connected to the down conductor/tower. These aspects will be useful in design of protection schemes and also in analyzing the field structure around instrumented towers.
Resumo:
We report thermally induced instability leading to catastrophic breakup in acoustically levitated vaporizing fuel droplets. Change in surface tension and viscosity with increase in droplet temperature causes wide fluctuations in droplet aspect ratio. If the viscous damping of aspect ratio oscillation is not strong enough, the droplet goes through unbounded stretching. If the droplet exceeds a critical Weber number locally, a bag type and capillary wave induced atomization can occur, which leads to catastrophic breakup. A stability criterion has been established based on the inhomogeneity of Bernoulli (acoustic) pressure and surface tension of the droplet in terms of a local Weber number and Ohnesorge number. This instability is thermally induced in a droplet which does not experience instabilities without heating. (C) 2012 Elsevier Ltd. All rights reserved.