965 resultados para Organic compounds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The role played by H+ hydrido iodocarbonyl and H- hydrido carbonyl ruthenium catalysts in the different catalytic steps of hydroformylation and hydroesterification of olefins, and in the homologation of alcohols has been investigated. The H- hydrido carbonyl species are mainly involved in the activation of olefins and in the hydrogenation of the acyl intermediates to aldehydes and alcohols, whereas the H+ hydrido iodocarbonyl derivatives are involved in the activation of alcohols and other oxygenated substrates, and in their carbonylation to esters. The cooperation between the two species, possible under particular reaction conditions, results in an improvement of the selectivity towards homologation (carbonylation plus hydrogenation) products. Heterogeneous Lewis acid promoters, easily recyclable from the reaction mixture, have also been successfully used in the hydrocarbonylation of alcohols, resulting in an increase of the carbonylation and homologation products. A reaction pathway in agreement with the experimental results is discussed. © 1989.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The constant petrol fuel leak in gas stations has caused concern in many countries around the world. Those fuels have toxic organic compounds in their composition, like Polycyclic Aromatic Hydrocarbons (PAH), which are harmful to the human health. In this work the efficiency of the protection layer with a High Density Polyethylene (HDPE) membrane of 2.5 mm thickness was evaluated. The study was based in the diffusive process in the intact membrane by a permeameter developed to evaluate the diffusive process. The membrane was putted in the middle of the system to separate two sides: a local soil impregnated with diesel oil (in one side) and pure water (in the other side). The chromatography technique was conducted to evaluate the contamination in the pure water. The analyses were made monthly in a total period of 6 months of research. The results tests show that the membrane was less effective to antracene and naphthalene compounds. Despite that, the results showed that the HDPE membrane is a good alternative to prevent contamination of water and soil by the compounds under study up to one year, based on the performance in the time of study.
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Ozone, first discovered in the mid 1800’s, is a triatomic allotrope of oxygen that is a powerful oxidant. For over a century, research has been conducted into the synthetic application and mechanism of reactions of ozone with organic compounds. One of the major areas of interest has been the ozonolysis of alkenes. The production of carbonyl compounds is the most common synthetic application of ozonolysis. The generally accepted mechanism developed by Rudolf Criegee for this reaction involves the 1,3-electrocyclic addition of ozone to the π bond of the alkene to form a 1,2,3-trioxolane or primary ozonide. The primary ozonide is unstable at temperatures above -100 °C and undergoes cycloreversion to produce the carbonyl oxide and carbonyl intermediates. These intermediates then recombine in another 1,3-electrocyclic addition step to form the 1,2,4-trioxolane or final ozonide. While the final ozonide is often isolable, most synthetic applications of ozonolysis require a subsequent reductive or oxidative step to form the desired carbonyl compound. During investigations into the nucleophilic trapping of the reactive carbonyl oxide, it was discovered that when amines were used as additives, an increased amount of reaction time was required in order to consume all of the starting material. Surprisingly, significant amounts of aldehydes and a suppression of ozonide formation also occurred which led to the discovery that amine N-oxides formed by the ozonation of the amine additives in the reaction were intercepting the carbonyl oxide. From the observed production of aldehydes, our proposed mechanism for the in situ reductive ozonolysis reaction with amine N-oxides involves the nucleophilic trapping of the carbonyl oxide intermediate to produce a zwitterionic adduct that fragments into 1O2, amine and the carbonyl thereby avoiding the formation of peroxidic intermediates. With the successful total syntheses of peroxyacarnoates A and D by Dr. Chunping Xu, the asymmetric total synthesis of peroxyplakorate A3 was investigated. The peroxyplakoric acids are cyclic peroxide natural products isolated from the Plakortis species of marine sponge that have been found to exhibit activity against malaria, cancer and fungi. Even though the peroxyplakorates differ from the peroxyacarnoates in the polyunsaturated tail and the head group, the lessons learned from the syntheses of the peroxyacarnoates have proven to be valuable in the asymmetric synthesis of peroxyplakorate A3. The challenges for the asymmetric synthesis of peroxyplakorate A3 include the stereospecific formation of the 3-methoxy-1,2-dioxane core with a propionate head group and the introduction of oxidation sensitive dienyl tail in the presence of a reduction sensitive 1,2-dioxane core. It was found that the stereochemistry of two of the chiral centers could be controlled by an anti-aldol reaction of a chiral propionate followed by the stereospecific intramolecular cyclization of a hydroperoxyacetal. The regioselective ozonolysis of a 1,2-disubstituted alkene in the presence of a terminal alkyne forms the required hydroperoxyacetal as a mixture of diastereomers. Finally, the dienyl tail is introduced by a hydrometallation/iodination of the alkyne to produce a vinyl iodide followed by a palladium catalyzed coupling reaction. While the coupling reaction was unsuccessful in these attempts, it is still believed that the intramolecular cyclization to introduce the 1,2-dioxane core could prove to be a general solution to many other cyclic peroxides natural products.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV