973 resultados para Oregon. State Land Dept.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: OKI regional land use : 1975. It was published by OKI Regional Planning Authority in 1975. Scale [ca. 1:5,000]. Covers Cincinnati Region, Ohio including Butler, Clermont, Hamilton, Warren counties, Ohio; Boone, Campbell, and Kenton counties, Kentucky; and Dearborn and Ohio counties, Indiana. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Ohio South State Plane NAD 1983 coordinate system (in Feet) (Fipszone 3402). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map is colored to show land use categories: Urban residential ; Suburban residential ; Commercial ; Institutional/Service ; Utilities ; Industrial ; Resource extraction ; Recreational/Open space ; Cropland ; Grassland ; Woodland ; Water. It also shows features as major roads, drainage, administrative and political boundaries, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic, topographic paper map entitled: Milwaukee and vicinity, Wisconsin, 1959, mapped, edited and published by the Geological Survey. It was published by U.S. Dept. of the Interior, Geological Survey in 1962. Scale 1:24,000. Compiled from 1:24,000-scale maps of Thiensville, Menomonee Falls, Wauwatosa, Milwaukee, South Milwaukee, Greendale 1958, and Hales Corners 1959 7.5 minute quadrangles. Selected hydrographic data compiled from U.S. Lake Survey Charts 74 and 743 (1957). This layer is image 1 of 4 total images of the four sheet source map representing the northwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Wisconsin South State Plane NAD 1927 coordinate system (Fipszone 4803). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief shown by contours (interval 10 feet) and spot heights. Depths shown by contours and soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic, topographic paper map entitled: Milwaukee and vicinity, Wisconsin, 1959, mapped, edited and published by the Geological Survey. It was published by U.S. Dept. of the Interior, Geological Survey in 1962. Scale 1:24,000. Compiled from 1:24,000-scale maps of Thiensville, Menomonee Falls, Wauwatosa, Milwaukee, South Milwaukee, Greendale 1958, and Hales Corners 1959 7.5 minute quadrangles. Selected hydrographic data compiled from U.S. Lake Survey Charts 74 and 743 (1957). This layer is image 3 of 4 total images of the four sheet source map representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Wisconsin South State Plane NAD 1927 coordinate system (Fipszone 4803). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief shown by contours (interval 10 feet) and spot heights. Depths shown by contours and soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic, topographic paper map entitled: Milwaukee and vicinity, Wisconsin, 1959, mapped, edited and published by the Geological Survey. It was published by U.S. Dept. of the Interior, Geological Survey in 1962. Scale 1:24,000. Compiled from 1:24,000-scale maps of Thiensville, Menomonee Falls, Wauwatosa, Milwaukee, South Milwaukee, Greendale 1958, and Hales Corners 1959 7.5 minute quadrangles. Selected hydrographic data compiled from U.S. Lake Survey Charts 74 and 743 (1957). This layer is image 2 of 4 total images of the four sheet source map representing the northeast portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Wisconsin South State Plane NAD 1927 coordinate system (Fipszone 4803). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief shown by contours (interval 10 feet) and spot heights. Depths shown by contours and soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic, topographic paper map entitled: Milwaukee and vicinity, Wisconsin, 1959, mapped, edited and published by the Geological Survey. It was published by U.S. Dept. of the Interior, Geological Survey in 1962. Scale 1:24,000. Compiled from 1:24,000-scale maps of Thiensville, Menomonee Falls, Wauwatosa, Milwaukee, South Milwaukee, Greendale 1958, and Hales Corners 1959 7.5 minute quadrangles. Selected hydrographic data compiled from U.S. Lake Survey Charts 74 and 743 (1957). This layer is image 4 of 4 total images of the four sheet source map representing the southeast portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Wisconsin South State Plane NAD 1927 coordinate system (Fipszone 4803). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief shown by contours (interval 10 feet) and spot heights. Depths shown by contours and soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan of Boston proper : showing changes in street and wharf lines, 1795 to 1895, by Charles C. Perkins, Jan. 31st, 1895. It was printed by Geo. H. Walker, lith., for the Boston (Mass.). Engineering Dept. Annual report of the City Engineer, 1895. Scale [ca. 1:4,800]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows Boston proper's original shoreline and changes in wharf line for years 1795, 1850 and 1895. It also shows early streets with later changes and discontinued streets. It includes features such as roads, railroads, drainage, wharves, some public buildings, parks, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: General plan of Franklin Park, [by] City of Boston, Park Dept. ; Fredk. Law Olmsted, landscape architect ; William Jackson, city engineer ; Wm. M. Coombs, del. It was published in 1885. Scale [ca. 1:2,700]. Shows park paths and drives, and park features and areas (fields, hills, gardens, grounds, woods, etc.) Relief is shown by spot heights. The map includes a descriptive text, an index map with key, and tables: distances from park, areas, and lengths of ways. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Stanford's new map of the Orange Free State, the southern part of the South African Republic, the northern frontier of Cape Colony, Natal, Basutoland and Delagoa Bay. It was published by E. Stanford in 1899. Scale 1:1,000,000 The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Lambert Conformal Conic projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, roads, railroads and stations, administrative and territorial boundaries, shoreline features, and more. Relief shown by shading and spot heights.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
The aim of this Factor Markets Working Paper is to identify the driving forces that shape agricultural land structures, land market and land leasing in the Former Yugoslav Republic of Macedonia (FYROM). Institutional developments and land reforms have so far been modest in the FYROM, and have not contributed to significant changes in agricultural ownership, operational structures, or land market and land leasing arrangements. Land ownership and land use are bimodal, consisting of several small-scale family farms and a few large-scale agricultural enterprises. The small family farms own and operate land on several small parcels, which is one of the major obstacles to the modernisation of family farm production. A considerable portion of the land is uncultivated, which affects land market and land leasing values. Due to underdeveloped institutional frameworks and market institutions in support of small-scale farms, a large proportion of state-owned land is rented by agricultural enterprises.
Resumo:
This paper describes how factor markets are presented in applied equilibrium models and how we plan to improve and to extend the presentation of factor markets in two specific models: MAGNET and ESIM. We do not argue that partial equilibrium models should become more ‘general’ in the sense of integrating all factor markets, but that the shift of agricultural income policies to decoupled payments linked to land in the EU necessitates the inclusion of land markets in policy-relevant modelling tools. To this end, this paper outlines options to integrate land markets in partial equilibrium models. A special feature of general equilibrium models is the inclusion of fully integrated factor markets in the system of equations to describe the functionality of a single country or a group of countries. Thus, this paper focuses on the implementation and improved representation of agricultural factor markets (land, labour and capital) in computable general equilibrium (CGE) models. This paper outlines the presentation of factor markets with an overview of currently applied CGE models and describes selected options to improve and extend the current factor market modelling in the MAGNET model, which also uses the results and empirical findings of our partners in this FP project.
Resumo:
This dataset contains continuous time series of land surface temperature (LST) at spatial resolution of 300m around the 12 experimental sites of the PAGE21 project (grant agreement number 282700, funded by the EC seventh Framework Program theme FP7-ENV-2011). This dataset was produced from hourly LST time series at 25km scale, retrieved from SSM/I data (André et al., 2015, doi:10.1016/j.rse.2015.01.028) and downscaled to 300m using a dynamic model and a particle smoothing approach. This methodology is based on two main assumptions. First, LST spatial variability is mostly explained by land cover and soil hydric state. Second, LST is unique for a land cover class within the low resolution pixel. Given these hypotheses, this variable can be estimated using a land cover map and a physically based land surface model constrained with observations using a data assimilation process. This methodology described in Mechri et al. (2014, doi:10.1002/2013JD020354) was applied to the ORCHIDEE land surface model (Krinner et al., 2005, doi:10.1029/2003GB002199) to estimate prior values of each land cover class provided by the ESA CCI-Land Cover product (Bontemps et al., 2013) at 300m resolution . The assimilation process (particle smoother) consists in simulating ensemble of LST time series for each land cover class and for a large number of parameter sets. For each parameter set, the resulting temperatures are aggregated considering the grid fraction of each land cover and compared to the coarse observations. Miniminizing the distance between the aggregated model solutions and the observations allow us to select the simulated LST and the corresponding parameter sets which fit the observations most closely. The retained parameter sets are then duplicated and randomly perturbed before simulating the next time window. At the end, the most likely LST of each land cover class are estimated and used to reconstruct LST maps at 300m resolution using ESA CCI-Land Cover. The resulting temperature maps on which ice pixels were masked, are provided at daily time step during the nine-year analysis period (2000-2009).
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Performed under Contract No. HEW-105-76-1140."