895 resultados para Optimal Control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 37F21, 70H20, 37L40, 37C40, 91G80, 93E20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, (1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) .7%), borderline (HbA1c 7-8.9%), and poor (HbA1c .9%) glycemic control and potentially new risk factors (e.g. work characteristics), and (2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and (3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adequate care of type 2 diabetes is reflected by the individual’s adherence to dietary guidance; yet, few patients are engaged in diabetes self-care at the recommended level, regardless of race/ethnicity. Few studies on the effect of dietary medical advice on diabetes self-management (DSM) and glycemic control have been conducted on Haitian and African American adults with type 2 diabetes. These relationships were assessed in total of 254 Blacks with type 2 diabetes (Haitian Americans = 129; African Americans = 125) recruited from Miami-Dade and Broward Counties, Florida by community outreach methods. Although dietary advice received was not significantly different between the two Black ethnicities, given advice “to follow a diet” as a predictor of “using food groups” was significant for Haitian Americans, but not for African Americans. Haitian Americans who were advised to follow a diet were approximately 3 times more likely to sometimes or often use food groups (or exchange lists) in planning meals. Less than optimal glycemic control (A1C > 7.2) was inversely related to DSM for African Americans; but the relationship was not significant for Haitian Americans. A one unit increase in DSM score decreased the odds ratio point estimate of having less than optimal glycemic control (A1C > 7.2%) by a factor of 0.94 in African Americans. These results suggest that medical advice for diet plans may not be communicated effectively for DSM for some races/ethnicities. Research aimed at uncovering the enablers and barriers of diet management specific to Black ethnicities with type 2 diabetes is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, 1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) ≥7%), borderline (HbA1c 7-8.9%), and poor (HbA1c ≥9%) glycemic control and potentially new risk factors (e.g. work characteristics), and 2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and 3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With increasing prevalence and capabilities of autonomous systems as part of complex heterogeneous manned-unmanned environments (HMUEs), an important consideration is the impact of the introduction of automation on the optimal assignment of human personnel. The US Navy has implemented optimal staffing techniques before in the 1990's and 2000's with a "minimal staffing" approach. The results were poor, leading to the degradation of Naval preparedness. Clearly, another approach to determining optimal staffing is necessary. To this end, the goal of this research is to develop human performance models for use in determining optimal manning of HMUEs. The human performance models are developed using an agent-based simulation of the aircraft carrier flight deck, a representative safety-critical HMUE. The Personnel Multi-Agent Safety and Control Simulation (PMASCS) simulates and analyzes the effects of introducing generalized maintenance crew skill sets and accelerated failure repair times on the overall performance and safety of the carrier flight deck. A behavioral model of four operator types (ordnance officers, chocks and chains, fueling officers, plane captains, and maintenance operators) is presented here along with an aircraft failure model. The main focus of this work is on the maintenance operators and aircraft failure modeling, since they have a direct impact on total launch time, a primary metric for carrier deck performance. With PMASCS I explore the effects of two variables on total launch time of 22 aircraft: 1) skill level of maintenance operators and 2) aircraft failure repair times while on the catapult (referred to as Phase 4 repair times). It is found that neither introducing a generic skill set to maintenance crews nor introducing a technology to accelerate Phase 4 aircraft repair times improves the average total launch time of 22 aircraft. An optimal manning level of 3 maintenance crews is found under all conditions, the point at which any additional maintenance crews does not reduce the total launch time. An additional discussion is included about how these results change if the operations are relieved of the bottleneck of installing the holdback bar at launch time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracting wave energy from seas has been proven to be very difficult although various technologies have been developed since 1970s. Among the proposed technologies, only few of them have been actually progressed to the advanced stages such as sea trials or pre-commercial sea trial and engineering. One critical question may be how we can design an efficient wave energy converter or how the efficiency of a wave energy converter can be improved using optimal and control technologies, because higher energy conversion efficiency for a wave energy converter is always pursued and it mainly decides the cost of the wave energy production. In this first part of the investigation, some conventional optimal and control technologies for improving wave energy conversion are examined in a form of more physical meanings, rather than the purely complex mathematical expressions, in which it is hoped to clarify some confusions in the development and the terminologies of the technologies and to help to understand the physics behind the optimal and control technologies. As a result of the understanding of the physics and the principles of the optima, a new latching technology is proposed, in which the latching duration is simply calculated from the wave period, rather than based on the future information/prediction, hence the technology could remove one of the technical barriers in implementing this control technology. From the examples given in the context, this new latching control technology can achieve a phase optimum in regular waves, and hence significantly improve wave energy conversion. Further development on this latching control technologies can be found in the second part of the investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is to conduct a comparative study in order to estimate the impact of the financial crisis to the GNI of Greece and Iceland. By applying synthetic control matching (a relatively new methodology) the study intends to compare the two countries, thus deducting conclusions about good or bad measures adopted. The results indicate that in both cases the adopted measures were not the optimal ones, since the synthetic counterfactual appear to perform better than the actual Greece and Iceland. Moreover, it is shown that Iceland reacted better to the shock it was exposed. However, different characteristics of the two countries impede the application of Icelandic actions in the Greek case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creative ways of utilising renewable energy sources in electricity generation especially in remote areas and particularly in countries depending on imported energy, while increasing energy security and reducing cost of such isolated off-grid systems, is becoming an urgently needed necessity for the effective strategic planning of Energy Systems. The aim of this research project was to design and implement a new decision support framework for the optimal design of hybrid micro grids considering different types of different technologies, where the design objective is to minimize the total cost of the hybrid micro grid while at the same time satisfying the required electric demand. Results of a comprehensive literature review, of existing analytical, decision support tools and literature on HPS, has identified the gaps and the necessary conceptual parts of an analytical decision support framework. As a result this research proposes and reports an Iterative Analytical Design Framework (IADF) and its implementation for the optimal design of an Off-grid renewable energy based hybrid smart micro-grid (OGREH-SμG) with intra and inter-grid (μG2μG & μG2G) synchronization capabilities and a novel storage technique. The modelling design and simulations were based on simulations conducted using HOMER Energy and MatLab/SIMULINK, Energy Planning and Design software platforms. The design, experimental proof of concept, verification and simulation of a new storage concept incorporating Hydrogen Peroxide (H2O2) fuel cell is also reported. The implementation of the smart components consisting Raspberry Pi that is devised and programmed for the semi-smart energy management framework (a novel control strategy, including synchronization capabilities) of the OGREH-SμG are also detailed and reported. The hybrid μG was designed and implemented as a case study for the Bayir/Jordan area. This research has provided an alternative decision support tool to solve Renewable Energy Integration for the optimal number, type and size of components to configure the hybrid μG. In addition this research has formulated and reported a linear cost function to mathematically verify computer based simulations and fine tune the solutions in the iterative framework and concluded that such solutions converge to a correct optimal approximation when considering the properties of the problem. As a result of this investigation it has been demonstrated that, the implemented and reported OGREH-SμG design incorporates wind and sun powered generation complemented with batteries, two fuel cell units and a diesel generator is a unique approach to Utilizing indigenous renewable energy with a capability of being able to synchronize with other μ-grids is the most effective and optimal way of electrifying developing countries with fewer resources in a sustainable way, with minimum impact on the environment while also achieving reductions in GHG. The dissertation concludes with suggested extensions to this work in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trichoderma isolates were obtained from diseased leaves and fruit collected from plantations in the main banana production area in Northern Queensland. Phylogenetic analyses identified the Trichoderma isolates as T. harzianum and T. virens. The Trichoderma spp. were found to be antagonistic against the banana leaf pathogens Mycosphaerella musicola, Cordana musae, and Deight-oniella torulosa in vitro. Several products used by the banana industry to increase production, including molasses, Fishoil and Seasol, were tested as food source for the Trichoderma isolates. The optimal food substrate was found to be molasses at a concentration of 5 %, which when used in combination with a di-1-p-menthene spreader-sticker enhanced the survivability of Trichoderma populations under natural conditions. This formulation suppressed D. torulosa development under glasshouse conditions. Furthermore, high sensitivity was observed towards the protectant fungicide Mancozeb but Biopest oil (R), a paraffinic oil, only marginally suppressed the growth of Trichoderma isolates in vitro. Thus, this protocol represents a potential to manage banana leaf pathogens as a part of an integrated disease approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ingold port adaption of a free beam NIR spectrometer is tailored for optimal bioprocess monitoring and control. The device shows an excellent signal to noise ratio dedicated to a large free aperture and therefore a large sample volume. This can be seen particularly in the batch trajectories which show a high reproducibility. The robust and compact design withstands rough process environments as well as SIP/CIP cycles. Robust free beam NIR process analyzers are indispensable tools within the PAT/QbD framework for realtime process monitoring and control. They enable multiparametric, non-invasive measurements of analyte concentrations and process trajectories. Free beam NIR spectrometers are an ideal tool to define golden batches and process borders in the sense of QbD. Moreover, sophisticated data analysis both quantitative and MSPC yields directly to a far better process understanding. Information can be provided online in easy to interpret graphs which allow the operator to make fast and knowledge-based decisions. This finally leads to higher stability in process operation, better performance and less failed batches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document is the Online Supplement to ‘Myopic Allocation Policy with Asymptotically Optimal Sampling Rate,’ to be published in the IEEE Transactions of Automatic Control in 2017.