935 resultados para Optical signal and image processing device
Resumo:
"September 1998."
Resumo:
Mode of access: Internet.
Terrain classification based on markov random field texture modeling of SAR and SAR coherency images
Resumo:
Photopyroelectric spectroscopy (PPE) was used to study the thermal and optical properties of melanins. The photopyroelectric intensity signal and its phase were independently measured as a function of wavelength and chopping frequency for a given wavelength in the saturation part of the PPE spectrum. Equations for both the intensity and the phase of the PPE signal were used to fit the experimental results. From these fits we obtained for the first time, with great accuracy, the thermal diffusivity coefficient, the thermal conductivity, and the specific heat of the samples, as well as a value for the condensed phase optical gap, which we found to be 1.70 eV. (c) 2005 American Institute of Physics.
Resumo:
Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectral domain/swept source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional spatial properties of the sample, including its morphological layout and optical scatter. The morphological layout can be reconstructed in software via three-dimensional discrete Fourier transformation. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present a theoretical and experimental study of the imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.
Resumo:
Extraction and reconstruction of rectal wall structures from an ultrasound image is helpful for surgeons in rectal clinical diagnosis and 3-D reconstruction of rectal structures from ultrasound images. The primary task is to extract the boundary of the muscular layers on the rectal wall. However, due to the low SNR from ultrasound imaging and the thin muscular layer structure of the rectum, this boundary detection task remains a challenge. An active contour model is an effective high-level model, which has been used successfully to aid the tasks of object representation and recognition in many image-processing applications. We present a novel multigradient field active contour algorithm with an extended ability for multiple-object detection, which overcomes some limitations of ordinary active contour models—"snakes." The core part in the algorithm is the proposal of multigradient vector fields, which are used to replace image forces in kinetic function for alternative constraints on the deformation of active contour, thereby partially solving the initialization limitation of active contour for rectal wall boundary detection. An adaptive expanding force is also added to the model to help the active contour go through the homogenous region in the image. The efficacy of the model is explained and tested on the boundary detection of a ring-shaped image, a synthetic image, and an ultrasound image. The experimental results show that the proposed multigradient field-active contour is feasible for multilayer boundary detection of rectal wall
Resumo:
A novel algorithm for performing registration of dynamic contrast-enhanced (DCE) MRI data of the breast is presented. It is based on an algorithm known as iterated dynamic programming originally devised to solve the stereo matching problem. Using artificially distorted DCE-MRI breast images it is shown that the proposed algorithm is able to correct for movement and distortions over a larger range than is likely to occur during routine clinical examination. In addition, using a clinical DCE-MRI data set with an expertly labeled suspicious region, it is shown that the proposed algorithm significantly reduces the variability of the enhancement curves at the pixel level yielding more pronounced uptake and washout phases.
Resumo:
These are the full proceedings of the conference.
Resumo:
We investigate the feasibility of simultaneous suppressing of the amplification noise and nonlinearity, representing the most fundamental limiting factors in modern optical communication. To accomplish this task we developed a general design optimisation technique, based on concepts of noise and nonlinearity management. We demonstrate the immense efficiency of the novel approach by applying it to a design optimisation of transmission lines with periodic dispersion compensation using Raman and hybrid Raman-EDFA amplification. Moreover, we showed, using nonlinearity management considerations, that the optimal performance in high bit-rate dispersion managed fibre systems with hybrid amplification is achieved for a certain amplifier spacing – which is different from commonly known optimal noise performance corresponding to fully distributed amplification. Required for an accurate estimation of the bit error rate, the complete knowledge of signal statistics is crucial for modern transmission links with strong inherent nonlinearity. Therefore, we implemented the advanced multicanonical Monte Carlo (MMC) method, acknowledged for its efficiency in estimating distribution tails. We have accurately computed acknowledged for its efficiency in estimating distribution tails. We have accurately computed marginal probability density functions for soliton parameters, by numerical modelling of Fokker-Plank equation applying the MMC simulation technique. Moreover, applying a powerful MMC method we have studied the BER penalty caused by deviations from the optimal decision level in systems employing in-line 2R optical regeneration. We have demonstrated that in such systems the analytical linear approximation that makes a better fit in the central part of the regenerator nonlinear transfer function produces more accurate approximation of the BER and BER penalty. We present a statistical analysis of RZ-DPSK optical signal at direct detection receiver with Mach-Zehnder interferometer demodulation
Resumo:
It is well known that optic flow - the smooth transformation of the retinal image experienced by a moving observer - contains valuable information about the three-dimensional layout of the environment. From psychophysical and neurophysiological experiments, specialised mechanisms responsive to components of optic flow (sometimes called complex motion) such as expansion and rotation have been inferred. However, it remains unclear (a) whether the visual system has mechanisms for processing the component of deformation and (b) whether there are multiple mechanisms that function independently from each other. Here, we investigate these issues using random-dot patterns and a forced-choice subthreshold summation technique. In experiment 1, we manipulated the size of a test region that was permitted to contain signal and found substantial spatial summation for signal components of translation, expansion, rotation, and deformation embedded in noise. In experiment 2, little or no summation was found for the superposition of orthogonal pairs of complex motion patterns (eg expansion and rotation), consistent with probability summation between pairs of independent detectors. Our results suggest that optic-flow components are detected by mechanisms that are specialised for particular patterns of complex motion.
Resumo:
Over the last twenty years, we have been continuously seeing R&D efforts and activities in developing optical fibre grating devices and technologies and exploring their applications for telecommunications, optical signal processing and smart sensing, and recently for medical care and biophotonics. In addition, we have also witnessed successful commercialisation of these R&Ds, especially in the area of fibre Bragg grating (FBG) based distributed sensor network systems and technologies for engineering structure monitoring in industrial sectors such as oil, energy and civil engineering. Despite countless published reports and papers and commercial realisation, we are still seeing significant and novel research activities in this area. This invited paper will give an overview on recent advances in fibre grating devices and their sensing applications with a focus on novel fibre gratings and their functions and grating structures in speciality fibres. The most recent developments in (i) femtosecond inscription for microfluidic/grating devices, (2) tilted grating based novel polarisation devices and (3) dual-peak long-period grating based DNA hybridisation sensors will be discussed.
Resumo:
We experimentally investigate a multi-parameter optimization of conditions for generation of triangular pulses in normal dispersion fiber. We find that triangular pulses suitable for all optical processing applications can be generated for a wide range of input pulse chirps but that triangular pulse quality and stability is improved with increased input pulse chirp.
Resumo:
The aim of this work was to investigate human contrast perception at various contrast levels ranging from detection threshold to suprathreshold levels by using psychophysical techniques. The work consists of two major parts. The first part deals with contrast matching, and the second part deals with contrast discrimination. Contrast matching technique was used to determine when the perceived contrasts of different stimuli were equal. The effects of spatial frequency, stimulus area, image complexity and chromatic contrast on contrast detection thresholds and matches were studied. These factors influenced detection thresholds and perceived contrast at low contrast levels. However, at suprathreshold contrast levels perceived contrast became directly proportional to the physical contrast of the stimulus and almost independent of factors affecting detection thresholds. Contrast discrimination was studied by measuring contrast increment thresholds which indicate the smallest detectable contrast difference. The effects of stimulus area, external spatial image noise and retinal illuminance were studied. The above factors affected contrast detection thresholds and increment thresholds measured at low contrast levels. At high contrast levels, contrast increment thresholds became very similar so that the effect of these factors decreased. Human contrast perception was modelled by regarding the visual system as a simple image processing system. A visual signal is first low-pass filtered by the ocular optics. This is followed by spatial high-pass filtering by the neural visual pathways, and addition of internal neural noise. Detection is mediated by a local matched filter which is a weighted replica of the stimulus whose sampling efficiency decreases with increasing stimulus area and complexity. According to the model, the signals to be compared in a contrast matching task are first transferred through the early image processing stages mentioned above. Then they are filtered by a restoring transfer function which compensates for the low-level filtering and limited spatial integration at high contrast levels. Perceived contrasts of the stimuli are equal when the restored responses to the stimuli are equal. According to the model, the signals to be discriminated in a contrast discrimination task first go through the early image processing stages, after which signal dependent noise is added to the matched filter responses. The decision made by the human brain is based on the comparison between the responses of the matched filters to the stimuli, and the accuracy of the decision is limited by pre- and post-filter noises. The model for human contrast perception could accurately describe the results of contrast matching and discrimination in various conditions.
Resumo:
Visual perception is dependent on both light transmission through the eye and neuronal conduction through the visual pathway. Advances in clinical diagnostics and treatment modalities over recent years have increased the opportunities to improve the optical path and retinal image quality. Higher order aberrations and retinal straylight are two major factors that influence light transmission through the eye and ultimately, visual outcome. Recent technological advancements have brought these important factors into the clinical domain, however the potential applications of these tools and considerations regarding interpretation of data are much underestimated. The purpose of this thesis was to validate and optimise wavefront analysers and a new clinical tool for the objective evaluation of intraocular scatter. The application of these methods in a clinical setting involving a range of conditions was also explored. The work was divided into two principal sections: 1. Wavefront Aberrometry: optimisation, validation and clinical application The main findings of this work were: • Observer manipulation of the aberrometer increases variability by a factor of 3. • Ocular misalignment can profoundly affect reliability, notably for off-axis aberrations. • Aberrations measured with wavefront analysers using different principles are not interchangeable, with poor relationships and significant differences between values. • Instrument myopia of around 0.30D is induced when performing wavefront analysis in non-cyclopleged eyes; values can be as high as 3D, being higher as the baseline level of myopia decreases. Associated accommodation changes may result in relevant changes to the aberration profile, particularly with respect to spherical aberration. • Young adult healthy Caucasian eyes have significantly more spherical aberration than Asian eyes when matched for age, gender, axial length and refractive error. Axial length is significantly correlated with most components of the aberration profile. 2. Intraocular light scatter: Evaluation of subjective measures and validation and application of a new objective method utilising clinically derived wavefront patterns. The main findings of this work were: • Subjective measures of clinical straylight are highly repeatable. Three measurements are suggested as the optimum number for increased reliability. • Significant differences in straylight values were found for contact lenses designed for contrast enhancement compared to clear lenses of the same design and material specifications. Specifically, grey/green tints induced significantly higher values of retinal straylight. • Wavefront patterns from a commercial Hartmann-Shack device can be used to obtain objective measures of scatter and are well correlated with subjective straylight values. • Perceived retinal stray light was similar in groups of patients implanted with monofocal and multi focal intraocular lenses. Correlation between objective and subjective measurements of scatter is poor, possibly due to different illumination conditions between the testing procedures, or a neural component which may alter with age. Careful acquisition results in highly reproducible in vivo measures of higher order aberrations; however, data from different devices are not interchangeable which brings the accuracy of measurement into question. Objective measures of intraocular straylight can be derived from clinical aberrometry and may be of great diagnostic and management importance in the future.