825 resultados para Optical character recognition devices.
Resumo:
Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.
Resumo:
Hybrid face recognition, using image (2D) and structural (3D) information, has explored the fusion of Nearest Neighbour classifiers. This paper examines the effectiveness of feature modelling for each individual modality, 2D and 3D. Furthermore, it is demonstrated that the fusion of feature modelling techniques for the 2D and 3D modalities yields performance improvements over the individual classifiers. By fusing the feature modelling classifiers for each modality with equal weights the average Equal Error Rate improves from 12.60% for the 2D classifier and 12.10% for the 3D classifier to 7.38% for the Hybrid 2D+3D clasiffier.
Resumo:
Person tracking systems are dependent on being able to locate a person accurately across a series of frames. Optical flow can be used to segment a moving object from a scene, provided the expected velocity of the moving object is known; but successful detection also relies on being able segment the background. A problem with existing optical flow techniques is that they don’t discriminate the foreground from the background, and so often detect motion (and thus the object) in the background. To overcome this problem, we propose a new optical flow technique, that is based upon an adaptive background segmentation technique, which only determines optical flow in regions of motion. This technique has been developed with a view to being used in surveillance systems, and our testing shows that for this application it is more effective than other standard optical flow techniques.