960 resultados para Ontario Hooking Craft Guild
Resumo:
This chapter contributes to the anthology on learning to research - researching to learn because it emphases a need to design curricula that enables living research, and on-going researcher development, rather than one that restricts student and staff activities, within a marketised approach towards time. In recent decades higher education (HE) has come to be valued for its contribution to the global economy. Referred to as the neo-liberal university, a strong prioritisation has been placed on meeting the needs of industry by providing a better workforce. This perspective emphasises the role of a degree in HE to secure future material affluence, rather than to study as an on-going investment in the self (Molesworth , Nixon & Scullion, 2009: 280). Students are treated primarily as consumers in this model, where through their tuition fees they purchase a product, rather than benefit from the transformative potential university education offers for the whole of life.Given that HE is now measured by the numbers of students it attracts, and later places into well-paid jobs, there is an intense pressure on time, which has led to a method where the learning experiences of students are broken down into discrete modules. Whilst this provides consistency, students can come to view research processes in a fragmented way within the modular system. Topics are presented chronologically, week-by-week and students simply complete a set of tasks to ‘have a degree’, rather than to ‘be learners’ (Molesworth , Nixon & Scullion, 2009: 277) who are living their research, in relation to their own past, present and future. The idea of living research in this context is my own adaptation of an approach suggested by C. Wright Mills (1959) in The Sociological Imagination. Mills advises that successful scholars do not split their work from the rest of their lives, but treat scholarship as a choice of how to live, as well as a choice of career. The marketised slant in HE thus creates a tension firstly, for students who are learning to research. Mills would encourage them to be creative, not instrumental, in their use of time, yet they are journeying through a system that is structured for a swift progression towards a high paid job, rather than crafted for reflexive inquiry, that transforms their understanding throughout life. Many universities are placing a strong focus on discrete skills for student employability, but I suggest that embedding the transformative skills emphasised by Mills empowers students and builds their confidence to help them make connections that aid their employability. Secondly, the marketised approach creates a problem for staff designing the curriculum, if students do not easily make links across time over their years of study and whole programmes. By researching to learn, staff can discover new methods to apply in their design of the curriculum, to help students make important and creative connections across their programmes of study.
Resumo:
This thesis reports on a novel method to build a 3-D model of the above-water portion of icebergs using surface imaging. The goal is to work towards the automation of iceberg surveys, allowing an Autonomous Surface Craft (ASC) to acquire shape and size information. After collecting data and images, the core software algorithm is made up of three parts: occluding contour finding, volume intersection, and parameter estimation. A software module is designed that could be used on the ASC to perform automatic and fast processing of above-water surface image data to determine iceberg shape and size measurement and determination. The resolution of the method is calculated using data from the iceberg database of the Program of Energy Research and Development (PERD). The method was investigated using data from field trials conducted through the summer of 2014 by surveying 8 icebergs during 3 expeditions. The results were analyzed to determine iceberg characteristics. Limitations of this method are addressed including its accuracy. Surface imaging system and LIDAR system are developed to profile the above-water iceberg in 2015.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
During a 4-month period, July 2nd 2014 to November 1st 2014, Canadian physiotherapy (PT) professionals were solicited for participation in an empirical cross-sectional online survey questionnaire. Our research team was interested in exploring the ethical challenges encountered in the interactions between PT professionals and third party payers. Analysis of the survey will be disseminated through scientific publications. The purpose of this report is to give detailed results relevant to your provincial association.
Resumo:
Spark source mass spectroscopy was used to analyze 61 elements in ten ferromanganese nodules found near Glenora in the Bay of Quinte at the eastern end of Lake Ontario. Most minor elements, including As, Pb, and Hg, have concentrations between 1-100 µg/g. F, S, Co, Zn, and La have concentrations in 100 µg/g range. Ba and Sr are present at levels of 1% and 0.1% respectively. Compared to similar measurements on nodules found in the Great Lakes and in other parts of the globe, values reported here are generally lower. Compared to their marine equivalents, lake nodules appear to be inferior scavengers of minor elements. Examination of all available data corroborates the postulate that marine biological material is an important source of minor elements found in oceanic nodules.
Resumo:
Ferromanganese concretions from Grand Lake and Ship Harbour Lake in Nova Scotia and Mosque Lake in Ontario are most common in water 0.5 to 2 m deep. X-ray diffraction studies show the ferromanganese portions of the concretions to he amorphous. Petrographic and electron probe studies of the ferromanganese material reveal chemical banding of iron and manganese. Bulk chemical analyses indicate that the Fe:Mn ratios of concretions from different sites within a single lake are similar, whereas concretions from different lakes have characteristic Fe:Mn ratios. Trace element concs are different in different lakes and are generally several orders of magnitude less than those of oceanic nodules.
Resumo:
Snow samples collected from hand-dug pits at two sites in Simcoe County, Ontario, Canada were analysed for major and trace elements using the clean lab methods established for polar ice. Potentially toxic, chalcophile elements are highly enriched in snow, relative to their natural abundance in crustal rocks, with enrichment factor (EF) values (calculated using Sc) in the range 107 to 1081 for Ag, As, Bi, Cd, Cu, Mo, Pb, Sb, Te, and Zn. Relative to M/Sc ratios in snow, water samples collected at two artesian flows in this area are significantly depleted in Ag, Al, Be, Bi, Cd, Cr, Cu, Ni, Pb, Sb, Tl, V, and Zn at both sites, and in Co, Th and Tl at one of the sites. The removal from the waters of these elements is presumably due to such processes as physical retention (filtration) of metal-bearing atmospheric aerosols by organic and mineral soil components as well as adsorption and surface complexation of ionic species onto organic, metal oxyhydroxide and clay mineral surfaces. In the case of Pb, the removal processes are so effective that apparently ''natural'' ratios of Pb to Sc are found in the groundwaters. Tritium measurements show that the groundwater at one of the sites is modern (ie not more than 30 years old) meaning that the inputs of Pb and other trace elements to the groundwaters may originally have been much higher than they are today; the M/Sc ratios measured in the groundwaters today, therefore, represent a conservative estimate of the extent of metal removal along the flow path. Lithogenic elements significantly enriched in the groundwaters at both sites include Ba, Ca, Li, Mg, Mn, Na, Rb, S, Si, Sr, and Ti. The abundance of these elements can largely be explained in terms of weathering of the dominant silicate (plagioclase, potassium feldspar, amphibole and biotite) and carbonate minerals (calcite, dolomite and ankerite) in the soils and sediments of the watershed. Arsenic, Mo, Te, and especially U are also highly enriched in the groundwaters, due to chemical weathering: these could easily be explained if there are small amounts of sulfides (As, Mo, Te) and apatite (U) in the soils of the source area. Elements neither significantly enriched nor depleted at both sites include Fe, Ga, Ge, and P.