852 resultados para On-line microreactor
Resumo:
Intrusion (unauthorized stepping-into/staying-in a hazardous area), as a common type of near-miss, is the prime cause of the majority of incidents on construction sites including fall from heights, and striking against or being struck by moving objects. Accidents often occur because workers take shortcuts moving about the site without fully perceiving the potential dangers. A number of researches have been devoted to developing methods to prevent such behaviors mainly based on the theory of Behavior-Based Safety (BBS), which aims to cultivate safety behaviors among workers in accordance with safety regulations. In current BBS practice, trained observers and safety supervisors are responsible for safety behavior inspections following safety plans and operation regulations. The observation process is time-consuming and its effectiveness depends largely on the observer’s safety knowledge and experience, which often results in omissions or bias. This paper presents a reformed safety behavior modification approach by integrating a location-based technology with BBS. Firstly, a detailed background is provided, covering current intrusion problems on site, existing use of BBS for behavior improvement, difficulties in achieving widespread adoption and potential technologies for location tracking and in-time feedback. Then, a conceptual framework of positioning technology-enhanced BBS is developed, followed by details of the corresponding on-line supporting system, Real Time Location System (RTLS) and Virtual Construction System (VCS). The application of the system is then demonstrated and tested in a construction site in Hong Kong. Final comments are made concerning further research direction and prospects for wider adoption.
Resumo:
Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Resumo:
It has been known for decades that particles can cause adverse health effects as they are deposited within the respiratory system. Atmospheric aerosol particles influence climate by scattering solar radiation but aerosol particles act also as the nuclei around which cloud droplets form. The principal objectives of this thesis were to investigate the chemical composition and the sources of fine particles in different environments (traffic, urban background, remote) as well as during some specific air pollution situations. Quantifying the climate and health effects of atmospheric aerosols is not possible without detailed information of the aerosol chemical composition. Aerosol measurements were carried out at nine sites in six countries (Finland, Germany, Czech, Netherlands, Greece and Italy). Several different instruments were used in order to measure both the particulate matter (PM) mass and its chemical composition. In the off-line measurements the samples were collected first on a substrate or filter and gravimetric and chemical analysis were conducted in the laboratory. In the on-line measurements the sampling and analysis were either a combined procedure or performed successively within the same instrument. Results from the impactor samples were analyzed by the statistical methods. This thesis comprises also a work where a method for the determination carbonaceous matter size distribution by using a multistage impactor was developed. It was found that the chemistry of PM has usually strong spatial, temporal and size-dependent variability. In the Finnish sites most of the fine PM consisted of organic matter. However, in Greece sulfate dominated the fine PM and in Italy nitrate made the largest contribution to the fine PM. Regarding the size-dependent chemical composition, organic components were likely to be enriched in smaller particles than inorganic ions. Data analysis showed that organic carbon (OC) had four major sources in Helsinki. Secondary production was the major source in Helsinki during spring, summer and fall, whereas in winter biomass combustion dominated OC. The significant impact of biomass combustion on OC concentrations was also observed in the measurements performed in Central Europe. In this thesis aerosol samples were collected mainly by the conventional filter and impactor methods which suffered from the long integration time. However, by filter and impactor measurements chemical mass closure was achieved accurately, and a simple filter sampling was found to be useful in order to explain the sources of PM on the seasonal basis. The online instruments gave additional information related to the temporal variations of the sources and the atmospheric mixing conditions.
Development of Sample Pretreatment and Liquid Chromatographic Techniques for Antioxidative Compounds
Resumo:
In this study, novel methodologies for the determination of antioxidative compounds in herbs and beverages were developed. Antioxidants are compounds that can reduce, delay or inhibit oxidative events. They are a part of the human defense system and are obtained through the diet. Antioxidants are naturally present in several types of foods, e.g. in fruits, beverages, vegetables and herbs. Antioxidants can also be added to foods during manufacturing to suppress lipid oxidation and formation of free radicals under conditions of cooking or storage and to reduce the concentration of free radicals in vivo after food ingestion. There is growing interest in natural antioxidants, and effective compounds have already been identified from antioxidant classes such as carotenoids, essential oils, flavonoids and phenolic acids. The wide variety of sample matrices and analytes presents quite a challenge for the development of analytical techniques. Growing demands have been placed on sample pretreatment. In this study, three novel extraction techniques, namely supercritical fluid extraction (SFE), pressurised hot water extraction (PHWE) and dynamic sonication-assisted extraction (DSAE) were studied. SFE was used for the extraction of lycopene from tomato skins and PHWE was used in the extraction of phenolic compounds from sage. DSAE was applied to the extraction of phenolic acids from Lamiaceae herbs. In the development of extraction methodologies, the main parameters of the extraction were studied and the recoveries were compared to those achieved by conventional extraction techniques. In addition, the stability of lycopene was also followed under different storage conditions. For the separation of the antioxidative compounds in the extracts, liquid chromatographic methods (LC) were utilised. Two novel LC techniques, namely ultra performance liquid chromatography (UPLC) and comprehensive two-dimensional liquid chromatography (LCxLC) were studied and compared with conventional high performance liquid chromatography (HPLC) for the separation of antioxidants in beverages and Lamiaceae herbs. In LCxLC, the selection of LC mode, column dimensions and flow rates were studied and optimised to obtain efficient separation of the target compounds. In addition, the separation powers of HPLC, UPLC, HPLCxHPLC and HPLCxUPLC were compared. To exploit the benefits of an integrated system, in which sample preparation and final separation are performed in a closed unit, dynamic sonication-assisted extraction was coupled on-line to a liquid chromatograph via a solid-phase trap. The increased sensitivity was utilised in the extraction of phenolic acids from Lamiaceae herbs. The results were compared to those of achieved by the LCxLC system.
Resumo:
Pressurised hot water extraction (PHWE) exploits the unique temperature-dependent solvent properties of water minimising the use of harmful organic solvents. Water is environmentally friendly, cheap and easily available extraction medium. The effects of temperature, pressure and extraction time in PHWE have often been studied, but here the emphasis was on other parameters important for the extraction, most notably the dimensions of the extraction vessel and the stability and solubility of the analytes to be extracted. Non-linear data analysis and self-organising maps were employed in the data analysis to obtain correlations between the parameters studied, recoveries and relative errors. First, pressurised hot water extraction (PHWE) was combined on-line with liquid chromatography-gas chromatography (LC-GC), and the system was applied to the extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) in sediment. The method is of superior sensitivity compared with the traditional methods, and only a small 10 mg sample was required for analysis. The commercial extraction vessels were replaced by laboratory-made stainless steel vessels because of some problems that arose. The performance of the laboratory-made vessels was comparable to that of the commercial ones. In an investigation of the effect of thermal desorption in PHWE, it was found that at lower temperatures (200ºC and 250ºC) the effect of thermal desorption is smaller than the effect of the solvating property of hot water. At 300ºC, however, thermal desorption is the main mechanism. The effect of the geometry of the extraction vessel on recoveries was studied with five specially constructed extraction vessels. In addition to the extraction vessel geometry, the sediment packing style and the direction of water flow through the vessel were investigated. The geometry of the vessel was found to have only minor effect on the recoveries, and the same was true of the sediment packing style and the direction of water flow through the vessel. These are good results because these parameters do not have to be carefully optimised before the start of extractions. Liquid-liquid extraction (LLE) and solid-phase extraction (SPE) were compared as trapping techniques for PHWE. LLE was more robust than SPE and it provided better recoveries and repeatabilities than did SPE. Problems related to blocking of the Tenax trap and unrepeatable trapping of the analytes were encountered in SPE. Thus, although LLE is more labour intensive, it can be recommended over SPE. The stabilities of the PAHs in aqueous solutions were measured using a batch-type reaction vessel. Degradation was observed at 300ºC even with the shortest heating time. Ketones and quinones and other oxidation products were observed. Although the conditions of the stability studies differed considerably from the extraction conditions in PHWE, the results indicate that the risk of analyte degradation must be taken into account in PHWE. The aqueous solubilities of acenaphthene, anthracene and pyrene were measured, first below and then above the melting point of the analytes. Measurements below the melting point were made to check that the equipment was working, and the results were compared with those obtained earlier. Good agreement was found between the measured and literature values. A new saturation cell was constructed for the solubility measurements above the melting point of the analytes because the flow-through saturation cell could not be used above the melting point. An exponential relationship was found between the solubilities measured for pyrene and anthracene and temperature.
Resumo:
The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.
Resumo:
The urban presence of flying-foxes (pteropid bats) in eastern Australia has increased in the last 20 years, putatively reflecting broader landscape change. The influx of large numbers often precipitates community angst, typically stemming from concerns about loss of social amenity, economic loss or negative health impacts from recently emerged bat-mediated zoonotic diseases such as Hendra virus and Australian bat lyssavirus. Local authorities and state wildlife authorities are increasingly asked to approve the dispersal or modification of flying-fox roosts to address expressed concerns, yet the scale of this concern within the community, and the veracity of the basis for concern are often unclear. We conducted an on-line survey to capture community attitudes and opinions on flying-foxes in the urban environment to inform management policy and decision-making. Analysis focused on awareness, concerns, and management options, and primarily compared responses from communities where flying-fox management was and was not topical at the time of the survey. While a majority of respondents indicated a moderate to high level of knowledge of both flying-foxes and Hendra virus, a substantial minority mistakenly believed that flying-foxes pose a direct infection risk to humans, suggesting miscommunication or misinformation, and the need for additional risk communication strategies. Secondly, a minority of community members indicated they were directly impacted by urban roosts, most plausibly those living in close proximity to the roost, suggesting that targeted management options are warranted. Thirdly, neither dispersal nor culling was seen as an appropriate management strategy by the majority of respondents, including those from postcodes where flying-fox management was topical. These findings usefully inform community debate and policy development and demonstrate the value of social analysis in defining the issues and options in this complex human - wildlife interaction. The mobile nature of flying-foxes underlines the need for a management strategy at a regional or larger scale, and independent of state borders.
Resumo:
We discuss three approaches to the use of technology as a teaching and learning tool that we are currently implementing for a target group of about one hundred second level engineering mathematics students. Central to these approaches is the underlying theme of motivating relatively poorly motivated students to learn, with the aim of improving learning outcomes. The approaches to be discussed have been used to replace, in part, more traditional mathematics tutorial sessions and lecture presentations. In brief, the first approach involves the application of constructivist thinking in the tertiary education arena, using technology as a computational and visual tool to create motivational knowledge conflicts or crises. The central idea is to model a realistic process of how scientific theory is actually developed, as proposed by Kuhn (1962), in contrast to more standard lecture and tutorial presentations. The second approach involves replacing procedural or algorithmic pencil-and-paper skills-consolidation exercises by software based tasks. Finally, the third approach aims at creating opportunities for higher order thinking via "on-line" exploratory or discovery mode tasks. The latter incorporates the incubation period method, as originally discussed by Rubinstein (1975) and others.
Resumo:
This paper reports on a study to evaluate technology-based processes for assessment moderation. The aim was to evaluate standard features found in an institutional Learning Management System, and their compatibility with the values and practices of a large teaching team. The process used an online discussion board forum for tutors, the paring of more experienced tutors with those new to the process, and further meetings conducted in both face-to-face and web conferencing environments. Online rubrics were used for assessing student work and the provision of feedback. A focus group conducted after marking was concluded and the analysis of the discussion board forum demonstrated a strong community of practice with a shared understanding of assessment requirements.
Resumo:
Australian education is undergoing national reform at many levels. The school sector, where preservice teachers will be employed, are adjusting to the demands of the National Curriculum and improving teacher quality through the National Professional Standards for Teachers. In addition, the university sector, where pre-service teachers are prepared, is undergoing its own education reform through the introduction of a demand-driven system and ensuring quality for tertiary education interns through the Higher Education Standards Framework. In moving to prepare preservice teachers for the school system; universities are grappling with the double-barreled approach to teacher quality; quality within the university course and quality within the student teachers being prepared. Through a collaborative partnership including university lecturers, Department of Education central administration staff, school principals, school coordinators, practicum supervisors, mentor teachers and pre-service teachers; the stakeholders have formed an online community of learners engaging in reflective practice who are committed to improving teacher quality. This online community not only links the key stakeholders within the project, it facilitates the nexus between theory and practice often missing in our pre-service teacher placements. This paper reports preliminary data about an initiative to ensure final year pre-service teachers are aspiring to meet the graduate professional standards through the use of an innovative online community.
Resumo:
Here, we describe a novel FBG interrogation system in which FBGs are used as both sensing and reference elements. The reference FBGs is bonded to a mechanical flexure system having a linear amplification of 1:3.5, which is actuated using a piezo-actuator by applying a 0-150V ramp. The lengths of the reference gratings decide the maximum strain that can be applied to the reference grating, which in turn decides that strain range which can be interrogated. The main advantages of the present system are the on-line measurement of the wavelength shifts, small size, good sensitivity, multiplexing capability and low cost.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite specimens with different thickness, geometry, and stacking sequences were subjected to fatigue spectrum loading in stages. Another set of specimens was subjected to static compression load. On-line acoustic Emission (AE) monitoring was carried out during these tests. Two artificial neural networks, Kohonen-self organizing feature map (KSOM), and multi-layer perceptron (MLP) have been developed for AE signal analysis. AE signals from specimens were clustered using the unsupervised learning KSOM. These clusters were correlated to the failure modes using available a priori information such as AE signal amplitude distributions, time of occurrence of signals, ultrasonic imaging, design of the laminates (stacking sequences, orientation of fibers), and AE parametric plots. Thereafter, AE signals generated from the rest of the specimens were classified by supervised learning MLP. The network developed is made suitable for on-line monitoring of AE signals in the presence of noise, which can be used for detection and identification of failure modes and their growth. The results indicate that the characteristics of AE signals from different failure modes in CFRP remain largely unaffected by the type of load, fiber orientation, and stacking sequences, they being representatives of the type of failure phenomena. The type of loading can have effect only on the extent of damage allowed before the specimens fail and hence on the number of AE signals during the test. The artificial neural networks (ANN) developed and the methods and procedures adopted show significant success in AE signal characterization under noisy environment (detection and identification of failure modes and their growth).
Resumo:
Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.
Resumo:
Silicon particle detectors are used in several applications and will clearly require better hardness against particle radiation in the future large scale experiments than can be provided today. To achieve this goal, more irradiation studies with defect generating bombarding particles are needed. Protons can be considered as important bombarding species, although neutrons and electrons are perhaps the most widely used particles in such irradiation studies. Protons provide unique possibilities, as their defect production rates are clearly higher than those of neutrons and electrons, and, their damage creation in silicon is most similar to the that of pions. This thesis explores the development and testing of an irradiation facility that provides the cooling of the detector and on-line electrical characterisation, such as current-voltage (IV) and capacitance-voltage (CV) measurements. This irradiation facility, which employs a 5-MV tandem accelerator, appears to function well, but some disadvantageous limitations are related to MeV-proton irradiation of silicon particle detectors. Typically, detectors are in non-operational mode during irradiation (i.e., without the applied bias voltage). However, in real experiments the detectors are biased; the ionising proton generates electron-hole pairs, and a rise in rate of proton flux may cause the detector to breakdown. This limits the proton flux for the irradiation of biased detectors. In this work, it is shown that, if detectors are irradiated and kept operational, the electric field decreases the introduction rate of negative space-charges and current-related damage. The effects of various particles with different energies are scaled to each others by the non-ionising energy loss (NIEL) hypothesis. The type of defects induced by irradiation depends on the energy used, and this thesis also discusses the minimum proton energy required at which the NIEL-scaling is valid.
Resumo:
As we enter the second phase of creative industries there is a shift away from the early 1990s ideology of the arts as a creative content provider for the wealth generating ‘knowledge’ economy to an expanded rhetoric encompassing ‘cultural capital’ and its symbolic value. A renewed focus on culture is examined through a regional scan of creative industries in which social engineering of the arts occurs through policy imperatives driven by ‘profit oriented conceptualisations of culture’ (Hornidge 2011, p. 263) In the push for artists to become ‘culturpreneurs’ a trend has emerged where demand for ‘embedded creatives’ (Cunningham 2013) sees an exodus from arts-based employment through use of transferable skills into areas outside the arts. For those that stay, within the performing arts in particular, employment remains project-based, sporadic, underpaid, self-initiated and often self-financed, requiring adaptive career paths. Artist entrepreneurs must balance creation and performance of their art with increasing amounts of time spent on branding, compliance, fundraising and the logistical and commercial requirements of operating in a CI paradigm. The artists’ key challenge thus becomes one of aligning core creative and aesthetic values with market and business considerations. There is also the perceived threat posed by the ‘prosumer’ phenomenon (Bruns 2008), in which digital on-line products are created and produced by those formerly seen as consumers of art or audiences for art. Despite negative aspects to this scenario, a recent study (Steiner & Schneider 2013) reveals that artists are happier and more satisfied than other workers within and outside the creative industries. A lively hybridisation of creative practice is occurring through mobile and interactive technologies with dynamic connections to social media. Continued growth in arts festivals attracts participation in international and transdisciplinary collaborations, whilst cross-sectoral partnerships provide artists with opportunities beyond a socio-cultural setting into business, health, science and education. This is occurring alongside a renewed engagement with place through the rise of cultural precincts in ‘creative cities’ (Florida 2008, Landry 2000), providing revitalised spaces for artists to gather and work. Finally, a reconsideration of the specialist attributes and transferable skills that artists bring to the creative industries suggests ways to dance through both the challenges and opportunities occasioned by the current complexities of arts’ practices.