829 resultados para OWL MONKEYS
Resumo:
The field of Semantic Web Services (SWS) has been recognized as one of the most promising areas of emergent research within the Semantic Web (SW) initiative, exhibiting an extensive commercial potential, and attracting significant attention from both industry and the research community. Currently, there exist several different frameworks and languages for formally describing a Web Service: OWL-S (Web Ontology Language for Services), WSMO (Web Service Modeling Ontology) and SAWSDL (Semantic Annotations for the Web Services Description Language) are the most important approaches. To the inexperienced user, choosing the appropriate paradigm for a specific SWS application may prove to be challenging, given a lack of clear separation between the ideas promoted by the associated research communities. In this paper, we systematically compare OWL-S, WSMO and SAWSDL from various standpoints, namely that of the service requester and provider as well as the broker based view. The comparison is meant to help users to better understand the strengths and limitations of these different approaches to formalising SWS, and to choose the most suitable solution for a given use case. © 2013 IEEE.
Resumo:
Software architecture plays an essential role in the high level description of a system design, where the structure and communication are emphasized. Despite its importance in the software engineering process, the lack of formal description and automated verification hinders the development of good software architecture models. In this paper, we present an approach to support the rigorous design and verification of software architecture models using the semantic web technology. We view software architecture models as ontology representations, where their structures and communication constraints are captured by the Web Ontology Language (OWL) and the Semantic Web Rule Language (SWRL). Specific configurations on the design are represented as concrete instances of the ontology, to which their structures and dynamic behaviors must conform. Furthermore, ontology reasoning tools can be applied to perform various automated verification on the design to ensure correctness, such as consistency checking, style recognition, and behavioral inference.
Resumo:
Wireless Sensor Network (WSN) systems have become more and more popular in our modern life. They have been widely used in many areas, such as smart homes/buildings, context-aware devices, military applications, etc. Despite the increasing usage, there is a lack of formal description and automated verification for WSN system design. In this paper, we present an approach to support the rigorous verification of WSN modeling using the Semantic Web technology We use Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL) to define a meta-ontology for the modeling of WSN systems. Furthermore, we apply ontology reasoners to perform automated verification on customized WSN models and their instances. We demonstrate and evaluate our approach through a Light Control System (LCS) as the case study.
Resumo:
The volume The Dialectics of Modernity - Recognizing Globalization. Studies on the Theoretical Perspectives of Globalization is the product of a work of that quarter of the century, which has been continuing, since 1989 up today, the true beginning of the globalization. Therefore, because that concept was not existing at that time, the work is not yet directed, in the first years, on the globalization itself. As it can be seen, this concept pushed through only in the second half of the nineties, when the concept could also be already statistically revealed in the world press. How a group of researchers from Hungary was enquirying during the nineties, according to partners of conversation at home and abroad, with whom one could talk about how the new world emerging with 1989 can actually be described, is a long story, the theory of which consists in the fact, that we apparently live in a world, where the most part of the people, even worse, even most of the intellectuals are hardly interested in how this one really looks like. On looking for partners, the circle of the authors of this volume was created. In Hungary, we quickly reached our limit (which much later did not prevent us from appearing, such as if we had always been living in the theoretically worked globalization). The French group around Jacques Poulain reacted the fastest way (and later around Francois de Bernard, with his particularly valuable homepage www.mondialisations.org), not much later the contact with the Russian colleagues around Alexandr Shumakov was created, in which Encyclopedia of the Globalization our contribution could already appear in 2003. On these traces, we came to the productive relationship with Leonid Grinin and Andrey Korotayev. Finally, we mention the Fürstenfeld's initiative, founded since 2009 with Melitta Becker's help in the framework of the Centre for the Interdisciplinary Research in this Austrian city. A relevant part of the author inside this book participated from the beginning in the work of the group. The individual contributions to this volume are linked together by a common interest in knowledge. This is the theoretical view of the phenomenon of the globalization. From the beginning, it was not further defined or limited to certain approaches, particularly an independent theory of the globalization was not intended. We started from the fact, that every legitimately revealed theoretical approach can contribute legitimately to a later theory of the globalization. In this way, the further contacts with Nico Stehr and the members of the Dresden group for the investigation of the security problems arose, mainly with Ernst Woit. Hegel defined the philosophy as the flight of the Owl of Minerva, which "begins its flight only with the falling twilight". Through the theoretical investigation of the globalization always becoming interdisciplinary, we wanted by no means to debate about this incomparable aphorism. We simply started from the conviction, that a new reality should not remain without any description.
Resumo:
Psychologists have studied self-recognition in human infants as an indication of self-knowledge (Amsterdam, 1972) and the development of abstract thought processes. Gallup (1970) modified the mark test used in human infant work to examine if nonhuman primates showed similar evidence of mirror self-recognition. Chimpanzees (Pan troglodytes) and orangutans (Pongo pygmnaeus) pass the mirror self-recognition test with limited mirror training or exposure. Other species of primates, such as gorillas and monkeys, have not passed the mirror test, despite extensive mirror exposure and training (Gallup, 1979). This project examined a gorilla (G. gorilla gorilla) named Otto in the traditional mark test. Using the modified mark-test, there were more incidents of touching the marked area while Otto was in front of the mirror than when he was not in front of the mirror. These results indicated that Otto was able to show some evidence of selfawareness.
Resumo:
Residential homegardens have environmental and social roles in the urban environment. These green spaces can potentially minimize the impacts caused by the growth of cities, being an alternative to connect fragmented areas or offer refuge to wildlife and therefore support the conservation of biodiversity. In addition, the homegardens demonstrate a leading role in increasing human well-being by promoting socialization opportunities, contact with nature, local culture as well as improvements in food security for the urban families. Nevertheless, it is still unclear what specific characteristics of homegardens can act effectively in the conservation of the biodiversity, as well as in the construction of food security and well being of the homegardeners and their families. The first chapter of this thesis analyzed the diversity of plant species (native and exotic) and assessed the contribution of different types of urban gardens (ornamental and forest gardens alike) in the presence of wildlife such as birds, monkeys and lizards. In the second chapter we evaluated the contribution of those gardens to the welfare and food security of their owners. In order to do this, 41 gardens were visited in Pium, a southern coastal town in the northeastern Brazil, which also happens to be in a periurban region undergoing rapid urban expansion and pressure from the real estate market. We surveyed the planned biodiversity and fauna associated with homegardens. The data related to food security and welfare were sampled through interviews with the person in charge of taking care of the gardens. These interviews covered issues on the supply of food from the garden and absence of chemical products, as well as aspects of the GNH indicator (Gross National Happiness). The results showed that these homegardens generally contribute little to the maintenance of native plant species (native species = 29/ total = 187). From its main features, the gardens were classified as ornamental, forest gardens and forest farms. These groups had a different effect on the presence of the animals studied and the last two contained most of the sampled native species. The diversity of plants and trees was a good predictor of the presence of birds and monkeys. Thus, the contribution of yards for the conservation of biodiversity depends on the type of garden: some even can have negative effects on conservation. These results can direct new approaches to detailed understanding of gardens and also of public policies applied to urban planning. The results of the second chapter showed that the two types of forest gardens contributed to household food security, for providing food and medicinal herbs, which mostly did not have pesticides and chemical 12 fertilizers. But the three groups of gardens are important components for the well being of their stakeholders. Gardens help promote the transmission of knowledge on agriculture, socialization, contact with nature and bring up feelings related to peace and harmony. Thus, forest gardens can be considered important means to get through public projects and policies designed to encourage biodiversity and promote food security and well-being in urban areas
Resumo:
Feeding is the primary selective pressure in all forms of animals. Nutritional ecological models predict consequences of preferred and non-preferred food consumption on behavioural, physiological and morphological adaptations. At same time, socioecological models infer socio-organizarion patterns based on feeding competition faced by animals. A list of preferred foods, and inferences regarding the intensity of feeding competition and its behavioural consequences are information of much importance for management of populations in fragments. In this work we observed the feeding behavior and spatial positioning of a group of more than 100 blond capuchin monkeys (Sapajus flavius) that inhabit a fragment of Atlantic forest, surrounded by sugarcane plantation. We compared the consumption of different food items with their monthly availability in the area to define the preferred and fallback food items. We recorded the vocalizations of aggression and the inter-individual distance (area of Minimum Convex Polygon/n individuals) to infer the type of food competition experienced by animals. In the year studied the fruit feeding time correlated with top consumed fruit productivity, indicating preference for fruits. Our data indicate that the species Elaeis sp., Cecropia palmata, Inga spp. and Simarouba amara are the preferred food items in the diet. Available all year round and uniformly distributed, sugarcane was a regular item in the diet and its was characterized as a staple fallback food for this group. Although fruits are preferential food items, direct competition rate did not correlate to fruit productivity in the area, maintaining the high rates throughout the year (2.45 events/ hour). The inter-individual distance index positively correlated with rain fall indicating scramble food competition. The number of neighbours of females carrying infants was smaller when fruit productivity is low, indicating that females carrying infants are suffering increased indirect competition. Our data indicates that blond capuchins in this fragment make use of sugar cane as a staple fallback food, which evidence the importance of sugar cane landscape for the survival of this critically endangered capuchin species in fragmented habitats in Northeast Brazil. A preliminary list of preferred and important foods is offered, and can assist in the choice of trees for reforestation, better fragments to be preserved and areas of release and translocation of animals. We did not observe an increase of contest competition while using preferred foods, but when using staple FBF. This may be due the altered environment, which results in high competition food throughout the year. Both the food preference as the social and behavioral consequences of high food competition experienced by animals in this fragment must be accompanied over the years to ensure the survival of this population.
Resumo:
Feeding is the primary selective pressure in all forms of animals. Nutritional ecological models predict consequences of preferred and non-preferred food consumption on behavioural, physiological and morphological adaptations. At same time, socioecological models infer socio-organizarion patterns based on feeding competition faced by animals. A list of preferred foods, and inferences regarding the intensity of feeding competition and its behavioural consequences are information of much importance for management of populations in fragments. In this work we observed the feeding behavior and spatial positioning of a group of more than 100 blond capuchin monkeys (Sapajus flavius) that inhabit a fragment of Atlantic forest, surrounded by sugarcane plantation. We compared the consumption of different food items with their monthly availability in the area to define the preferred and fallback food items. We recorded the vocalizations of aggression and the inter-individual distance (area of Minimum Convex Polygon/n individuals) to infer the type of food competition experienced by animals. In the year studied the fruit feeding time correlated with top consumed fruit productivity, indicating preference for fruits. Our data indicate that the species Elaeis sp., Cecropia palmata, Inga spp. and Simarouba amara are the preferred food items in the diet. Available all year round and uniformly distributed, sugarcane was a regular item in the diet and its was characterized as a staple fallback food for this group. Although fruits are preferential food items, direct competition rate did not correlate to fruit productivity in the area, maintaining the high rates throughout the year (2.45 events/ hour). The inter-individual distance index positively correlated with rain fall indicating scramble food competition. The number of neighbours of females carrying infants was smaller when fruit productivity is low, indicating that females carrying infants are suffering increased indirect competition. Our data indicates that blond capuchins in this fragment make use of sugar cane as a staple fallback food, which evidence the importance of sugar cane landscape for the survival of this critically endangered capuchin species in fragmented habitats in Northeast Brazil. A preliminary list of preferred and important foods is offered, and can assist in the choice of trees for reforestation, better fragments to be preserved and areas of release and translocation of animals. We did not observe an increase of contest competition while using preferred foods, but when using staple FBF. This may be due the altered environment, which results in high competition food throughout the year. Both the food preference as the social and behavioral consequences of high food competition experienced by animals in this fragment must be accompanied over the years to ensure the survival of this population.
Resumo:
Once thought to be predominantly the domain of cortex, multisensory integration has now been found at numerous sub-cortical locations in the auditory pathway. Prominent ascending and descending connection within the pathway suggest that the system may utilize non-auditory activity to help filter incoming sounds as they first enter the ear. Active mechanisms in the periphery, particularly the outer hair cells (OHCs) of the cochlea and middle ear muscles (MEMs), are capable of modulating the sensitivity of other peripheral mechanisms involved in the transduction of sound into the system. Through indirect mechanical coupling of the OHCs and MEMs to the eardrum, motion of these mechanisms can be recorded as acoustic signals in the ear canal. Here, we utilize this recording technique to describe three different experiments that demonstrate novel multisensory interactions occurring at the level of the eardrum. 1) In the first experiment, measurements in humans and monkeys performing a saccadic eye movement task to visual targets indicate that the eardrum oscillates in conjunction with eye movements. The amplitude and phase of the eardrum movement, which we dub the Oscillatory Saccadic Eardrum Associated Response or OSEAR, depended on the direction and horizontal amplitude of the saccade and occurred in the absence of any externally delivered sounds. 2) For the second experiment, we use an audiovisual cueing task to demonstrate a dynamic change to pressure levels in the ear when a sound is expected versus when one is not. Specifically, we observe a drop in frequency power and variability from 0.1 to 4kHz around the time when the sound is expected to occur in contract to a slight increase in power at both lower and higher frequencies. 3) For the third experiment, we show that seeing a speaker say a syllable that is incongruent with the accompanying audio can alter the response patterns of the auditory periphery, particularly during the most relevant moments in the speech stream. These visually influenced changes may contribute to the altered percept of the speech sound. Collectively, we presume that these findings represent the combined effect of OHCs and MEMs acting in tandem in response to various non-auditory signals in order to manipulate the receptive properties of the auditory system. These influences may have a profound, and previously unrecognized, impact on how the auditory system processes sounds from initial sensory transduction all the way to perception and behavior. Moreover, we demonstrate that the entire auditory system is, fundamentally, a multisensory system.
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
Making decisions is fundamental to everything we do, yet it can be impaired in various disorders and conditions. While research into the neural basis of decision-making has flourished in recent years, many questions remain about how decisions are instantiated in the brain. Here we explored how primates make abstract decisions and decisions in social contexts, as well as one way to non-invasively modulate the brain circuits underlying decision-making. We used rhesus macaques as our model organism. First we probed numerical decision-making, a form of abstract decision-making. We demonstrated that monkeys are able to compare discrete ratios, choosing an array with a greater ratio of positive to negative stimuli, even when this array does not have a greater absolute number of positive stimuli. Monkeys’ performance in this task adhered to Weber’s law, indicating that monkeys—like humans—treat proportions as analog magnitudes. Next we showed that monkeys’ ordinal decisions are influenced by spatial associations; when trained to select the fourth stimulus from the bottom in a vertical array, they subsequently selected the fourth stimulus from the left—and not from the right—in a horizontal array. In other words, they begin enumerating from one side of space and not the other, mirroring the human tendency to associate numbers with space. These and other studies confirmed that monkeys’ numerical decision-making follows similar patterns to that of humans, making them a good model for investigations of the neurobiological basis of numerical decision-making.
We sought to develop a system for exploring the neuronal basis of the cognitive and behavioral effects observed following transcranial magnetic stimulation, a relatively new, non-invasive method of brain stimulation that may be used to treat clinical disorders. We completed a set of pilot studies applying offline low-frequency repetitive transcranial magnetic stimulation to the macaque posterior parietal cortex, which has been implicated in numerical processing, while subjects performed a numerical comparison and control color comparison task, and while electrophysiological activity was recorded from the stimulated region of cortex. We found tentative evidence in one paradigm that stimulation did selectively impair performance in the number task, causally implicating the posterior parietal cortex in numerical decisions. In another paradigm, however, we manipulated the subject’s reaching behavior but not her number or color comparison performance. We also found that stimulation produced variable changes in neuronal firing and local field potentials. Together these findings lay the groundwork for detailed investigations into how different parameters of transcranial magnetic stimulation can interact with cortical architecture to produce various cognitive and behavioral changes.
Finally, we explored how monkeys decide how to behave in competitive social interactions. In a zero-sum computer game in which two monkeys played as a shooter or a goalie during a hockey-like “penalty shot” scenario, we found that shooters developed complex movement trajectories so as to conceal their intentions from the goalies. Additionally, we found that neurons in the dorsolateral and dorsomedial prefrontal cortex played a role in generating this “deceptive” behavior. We conclude that these regions of prefrontal cortex form part of a circuit that guides decisions to make an individual less predictable to an opponent.
Resumo:
Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.
Resumo:
The Early Miocene Napak XV locality (ca 20.5 Ma), Uganda, has yielded an interesting assemblage of fossils, including the very well represented amphicyonid Hecubides euryodon. The remarkable find of a nearly complete mandible, unfortunately with poorly preserved dentition, together with new dental remains allow us to obtain a better idea about the morphology and variability of this species. Additionally, we describe a newly discovered mandible of Hecubides euryodon from the Grillental-VI locality (Sperrgebiet, Namibia), which is the most complete and diagnostic Amphicyonidae material found in this area. Comparisons with Cynelos lemanensis from Saint Gérand le Pouy (France), the type locality, and with an updated sample of the species of amphicyonids described in Africa leads us to validate the genus Hecubides. Hecubides would be phylogenetically related to the medium and large size species of Amphicyonidae from Africa, most of them now grouped into the genera Afrocyon and Myacyon, both endemic to this continent.
Resumo:
Independent Inquiry into Child Sexual Exploitation (CSE), led by Kathleen Marshall In September 2013, a Ministerial Summit was held on the theme of child sexual exploitation (CSE) in Northern Ireland. The Police Service of Northern Ireland (PSNI) referred to Operation Owl, an investigation of allegations of CSE in Northern Ireland, which had resulted in a number of adults being interviewed and some being arrested. Two weeks later, the then Minister for Health, Social Services and Public Safety, Edwin Poots, announced three actions to address this issue: an ongoing PSNI investigation focusing on 22 children and young people; a thematic review of these cases by the Safeguarding Board for Northern Ireland (SBNI); and an independent, expert-led inquiry into CSE in Northern Ireland, to be commissioned by the Minister for Health, Social Services and Public Safety and the Minister of Justice. The Minister for Education agreed that the Education and Training Inspectorate (ETI) would enjoin the Inquiry in relation to schools and the effectiveness of the statutory curriculum with respect to CSE. The Inquiry was to focus on both children and young people living at home in the community and those living in care. This is an executive summary of the report of this Inquiry.