937 resultados para OVAL DEFECTS
First-Principles Study of the Electronic and Magnetic Properties of Defects in Carbon Nanostructures
Resumo:
Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $\mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.
Resumo:
We present a comprehensive study based on first-principles calculations about the interplay of four important ingredients on the electronic structure of graphene: defects + magnetism + ripples + strain. So far they have not been taken into account simultaneously in a set of ab initio calculations. Furthermore, we focus on the strain dependence of the properties of carbon monovacancies, with special attention to magnetic spin moments. We demonstrated that such defects show a very rich structural and spin phase-diagram with many spin solutions as function of strain. At zero strain the vacancy shows a spin moment of 1.5 Bohrs that increases up to 2 Bohrs with stretching. Changes are more dramatic under compression: the vacancy becomes non-magnetic under a compression larger than 2%. This transition is linked to the structural modifications associated with the formation of ripples in the graphene layer. Our results suggest that such interplay could have important implications for the design of future spintronics devices based on graphene derivatives, as for example a spin-strain switch based on vacancies.
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.
Resumo:
Abstract not available
Resumo:
Abstract for 24th Biennial Congress of the European Association for Cancer Research, 9–12 July 2016, Manchester, UK. Poster Session: Cancer Genomics, Epigenetics and Genome Instability II: Monday 11 July 2016
Resumo:
Abstract not available
Resumo:
Mitochondrial fatty acid oxidation (FAO) plays a pivotal role in energy homeostasis, namely during periods of fasting or metabolic stress. FAO defects are a group of inherited metabolic disorders that encompass at least twelve distinct enzyme or transporter deficiencies, and can present with a wide range of clinical symptoms with various degrees of severity. Besides recent advances, many doubts still remain on the degree and characteristics of mitochondrial dysfunction on FAOD and its contribution to the clinical phenotype.
Resumo:
This thesis demonstrates exciton engineering in semiconducting single-walled carbon nanotubes through tunable fluorescent quantum defects. By introducing different functional moieties on the sp2 lattice of carbon nanotubes, the nanotube photoluminescence is systematically tuned over 68 meV in the second near-infrared window. This new class of quantum emitters is enabled by a new chemistry that allows covalent attachment of alkyl/aryl functional groups from their iodide precursors in aqueous solution. Using aminoaryl quantum defects, we show that the pH and temperature of complex fluids can be optically measured through defect photoluminescence that encodes the local environment information. Furthermore, defect-bound trions, which are electron-hole-electron tri-carrier quasi-particles, are observed in alkylated single-walled carbon nanotubes at room temperature with surprisingly high photoluminescence brightness. Collectively, the emission from defect-bound excitons and trions in (6,5)-single walled carbon nanotubes is 18-fold brighter than that of the native exciton. These findings pave the way to chemical tailoring of the electronic and optical properties of carbon nanostructures with fluorescent quantum defects and may find applications in optoelectronics and bioimaging.
Resumo:
Automated fibre placement (AFP) enables the trajectory of unidirectional composite tape to be optimized, but laying down complex shapes with this technology can result in the introduction of defects. The aim of this experimental study is to investigate the influence of gaps and overlaps on the microstructure and tensile properties of carbon-epoxy laminates. First, a comparison between a hand-layup and AFP layup, draped and cured under the same conditions, shows equivalent microstructures and tensile properties. This provides the reference values for the study. Then, gap and overlap embedded defects (more or less severe) are introduced during manufacturing, on two cross-ply layups [(0°/(90°)5/0°] and [(90°/0°)2/90°]. Autoclave cure without a caul plate results in local thickness variation and microstructural changes which depend on the defect type. This has a strong influence on mechanical performance. Use of a caul plate avoids these variations and in this case embedded defects hardly affect tensile properties.
Resumo:
Background: In Portugal folic acid supplementation is recommended to start at least 2-3 months before conception for primary prevention of Neural Tube Defects. The aim of this study was to evaluate, within gestations with at least one congenital anomaly, possible association between maternal socio-demographic factors and the use of folic acid. Methods: Using data from the Portuguese national registry of congenital anomalies, for the 2004-2013 period, the association between folic acid use during pregnancy and maternal characteristics was studied using the chi-square test. Results: Considering all reported cases with congenital anomaly, the use of folic acid before conception was reported by 12.7% (n = 1233) of the women; 47.8% (n = 4623) started supplementation during the 1st trimester, 7% (n = 680) did not take folic acid and 32.5% (3143) of the records had no information on folic acid use. Women with professions that require higher academic differentiation started the use of supplements before pregnancy (p <0.001); women under 19 years old and with Arab ethnicity (p <0.001) did not take folic acid. Mothers with a previous pregnancy reported less use of folic acid (11.5% versus 14.7%) than mothers without a previous pregnancy (p <0.001). Conclusions: The results suggest some degree of association between maternal characteristics and use of folic acid. To increase the consumption of folic acid before pregnancy new measures are need to promote this primary prevention, among couples and health professionals. This study highlights some maternal characteristics and subgroups of mothers for who the measures should be reinforced.
Resumo:
Birth defects are a leading cause of infant mortality. Additionally, babies born with birth defects who survive infancy have a greater chance of illness and long term disability than babies without birth defects. The causes can involve genetic (such as chromosomal anomalies) or environmental (such as lead exposure during pregnancy) factors, or a combination of these factors. However, in about 70 percent of cases of birth defects, the causes are unknown. The South Carolina Birth Defects Program began in July 2006 after passage of the S.C. Birth Defects Act. This law mandates active surveillance of major structural birth defects identified prenatally through age two. South Carolina monitors over 50 birth defects recommended by the Centers for Disease Control and Prevention, National Birth Defects Prevention Network.
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.
Resumo:
Hollow, cylindrical, prismatic light guides (CPLGs) are optical components that, using total internal reflection (TIR), are able to transmit high-diameter light beams in daylight and artificial lighting applications without relevant losses. It is necessary to study the prism defects of their surfaces to quantify the behavior of these optical components. In this Letter, we analyze a CPLG made of a transparent dielectric material. Scanning electron microscopy (SEM) and the topographic optical profilometry by absorption in fluids (TOPAF) imaging technique are conducted to determine if there are defects in the corners of the prisms. A model for light guide transmittance that is dependent on prism defects is proposed. Finally, a simulation and an experimental study are carried out to check the validity of the proposed model.
Resumo:
Background: Transcatheter closure of atrial septal defects (ASD) has been accepted world-wide as an alternative to surgical closure with excellent results. This interventional, non-surgical technique plays an important role in the treatment of ASD mostly in the developing world where resources are limited. Objectives: To report the outcomes and short term follow-up of transcatheter closure of ASD over a 12-year period at our institution with limited resources. Patients and Methods: This retrospective study included all patients with the diagnosis of secundum ASD and significant shunting (Qp/Qs > 1.5:1) as well as dilated right atrium and right ventricle who had transcatheter closure at Integrated Cardiovascular Center (PJT), Dr. Cipto Mangunkusumo Hospital between October 2002 and October 2014. One hundred fifty-two patients enrolled in this study were candidates for device closure. Right and left heart cardiac catheterization was performed before the procedure. All patients underwent physical examination, ECG, chest X-ray and transthoracal echocardiography (TTE) prior to device implantation. Results: A total of 152 patients with significant ASD underwent device implantation. Subjects’ age ranged from 0.63 to 69.6 years, with median 9.36 years and mean 16.30 years. They consisted of 33 (21.7%) males and 119 (78.3%) females, with mean body weight of 29.9 kg (range 8 to 75; SD 18.2). The device was successfully implanted in 150 patients where the majority of cases received the Amplatzer septal occluder (147/150; 98%) and the others received the Heart Lifetech ASD occluder (3/150, 2%), whereas two other cases were not suitable for device closure and we decided for surgical closure. The mean ASD size was 19.75 (range 14 - 25) mm. During the procedure, 5 (4.9%) patients had bradycardia and 3 (2.9%) patients had supraventricular tachycardia (SVT), all of which resolved. Conclusions: In our center with limited facilities and manpower, transcatheter closure of atrial septal defect was effective and safe as an alternative treatment to surgery. The outcome and short-term follow-up revealed excellent results, but long-term follow-up is needed.