989 resultados para ORGANIC-SURFACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexaazamacrocycle (L) stabilized gold nanoparticles (AuNPs) were prepared by combining L with HAuCl4 center dot 3H(2)O in a variety of alcohol-water (1 : 1) mixtures. The dual roles of L as a reducing and stabilizing agent were exploited for the synthesis of AuNPs under the optimized ratio of L to Au3+ (2 : 1). Self-assembled gold nanofilms (AuNFs) were constructed at liquid-liquid interfaces by adding equal volumes of hexane to the dispersions of AuNPs in the alcohol-water systems. The nanofilms were formed spontaneously by shaking the two-phase mixture for a minute followed by standing. The alcohols explored for the self-assembly phenomenon were methanol, ethanol, i-propanol and t-butanol. The systems containing methanol or t-butanol resulted in AuNFs at the interfaces, whereas the other two alcohols were found not suitable and the AuNPs remained dispersed in the corresponding alcohol-water medium. The AuNFs prepared under suitable conditions were coated on a variety of surfaces by the dip and lift-off method/solvent removal approach. The AuNFs were characterized by UV-vis, SEM, TEM, AFM and contact angle measurement techniques. A coated glass-vial or cuvette was used as a catalytic reservoir for nitro-reduction reactions under ambient and aqueous conditions using NaBH4 as the reducing agent. The reduced products (amines) were extracted by aqueous work-up using ethyl acetate followed by evaporation of the organic layer; the isolated products required no further purification. The catalyst was recovered by simply decanting the reaction mixture whereupon the isolated catalyst remained coated inside the vessel. The recovered catalyst was found to be equally efficient for further catalytic cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rare occurrence of intramolecular hydrogen bonds (HBs) of the type N-H center dot center dot center dot F-C is detected in the derivatives of imides in a low polarity solvent by using multi-dimensional and multinuclear NMR experiments. The observation of (1h)J(FH), (2h)J(FN), and (2h)J(FF), where the spin magnetization is transmitted through space among the interacting NMR active nuclei, provided strong and unambiguous evidence for the existence of intra-molecular HBs. The variation in the chemical shifts of labile protons depending on physical conditions, such as the solvent dilution and the systematic alteration of temperature confirmed the presence of weak interactions through intramolecular HBs in all the investigated fluorine substituted molecules. The self or cross dimerization of molecules is unequivocally discarded by the analysis of the rates of diffusion obtained using pseudo-two dimensional DOSY experiments. The Density Function Theory (DFT) calculations based on the Quantum Theory of Atoms In Molecules (QTAIM) and Non Covalent Interaction (NCI), are in close agreement with the NMR experimental findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power densities required to operate active-matrix organic-light-emitting diode (AMOLED) based displays for high luminance applications, lead to temperature rise due to self heating. Temperature rise leads to significant degradation and consequent reduction in life time. In this work numerical techniques based computational fluid dynamics (CFD) is used to determine the temperature rise and its distribution for an AMOLED based display for a given power density and size. Passive cooling option in form of protruded rectangular fins is implemented to reduce the display temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We re-assess experimental soft X-ray absorption spectra of the oxygen K-shell which we recorded operando from iron oxide during photoelectrochemical water splitting in KOH electrolyte. In particular, we refer to recently reported transitional electron hole states which originate within the charge carrier depletion layer of the iron oxide and on the iron oxide surface. For the latter we find that an intermediate oxy-peroxo species is formed on the iron oxide with increasing bias potential, which disappears upon further polarization of the electrode, concomitantly with the evolution and disappearance of the aforementioned surface state. The oxygen spectra contain also the spectroscopic signatures of the electrolyte water, the position of which changes with increasing bias potential towards lower X-ray energies, revealing the breaking and formation of hydrogen bonds in the water during the experiment. Combined with potential dependent impedance spectroscopy data we are able to sketch the molecular structure of chemical intermediates and their charge carrier dynamics. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beyond product design, if the notion of product `lifecycle design' enforces the consideration of requirements from all the lifecycle phases of products, design for sustainability enforces the consideration of lifecycle design in the context of the lifecycles of other products, processes, institutions and their design. Consequently, sustainability requirements that need to be met by design are very diverse. In this article, we portray the nature of design process to address sustainability requirements. This is done taking an example of designing a urban household organic waste management system that requires less water and reclaims the nutrients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rates of hydrogen/deuterium (H/D) exchange determined by H-1 NMR spectroscopy are utilized to derive the strength of hydrogen bonds and to monitor the electronic effects in the site-specific halogen substituted benzamides and anilines. The theoretical fitting of the time dependent variation of the integral areas of H-1 NMR resonances to the first order decay function permitted the determination of HID exchange rate constants (k) and their precise half-lives (t(1/2)) with high degree of reproducibility. The comparative study also permitted the unambiguous determination of relative strength of hydrogen bonds and the contribution from electronic effects on the HID exchange rate. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report synthesis of symmetrically and non-symmetrically functionalized fluoranthene-based blue fluorescent molecular materials for non-doped electroluminescent devices. The solid state structure of these fluorophores has been established by single crystal X-ray diffraction analysis. Furthermore, a detailed experimental and theoretical study has been performed to understand the effect of substitution of symmetric and non-symmetric functional groups on optical, thermal and electrochemical properties of fluoranthene. These materials exhibit a deep blue emission and high PLQY in solution and solid state. The vacuum deposited, non-doped electroluminescent devices with the device structure ITO/NPD (15 nm)/CBP (15 nm)/EML (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al were fabricated and characterized. A systematic shift in the peak position of EL emission was observed from sky blue to bluish-green with EL maxima from 477 nm to 490 nm due to different functional groups on the periphery of fluoranthene. In addition, a high luminance of >= 2000 cd m(-2) and encouraging external quantum efficiency (EQE) of 1.1-1.4% were achieved. A correlation of the molecular structure with device performance has been established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoacoustic (PA) imaging of interphalangeal peripheral joints is of interest in the context of using the synovial membrane as a surrogate marker of rheumatoid arthritis. Previous work has shown that ultrasound (US) produced by absorption of light at the epidermis reflects on the bone surfaces within the finger. When the reflected signals are backprojected in the region of interest, artifacts are produced, confounding interpretation of the images. In this work, we present an approach where the PA signals known to originate from the epidermis are treated as virtual US transmitters, and a separate reconstruction is performed as in US reflection imaging. This allows us to identify the bone surfaces. Furthermore, the identification of the joint space is important as this provides a landmark to localize a region-of-interest in seeking the inflamed synovial membrane. The ability to delineate bone surfaces allows us to identify not only the artifacts but also the interphalangeal joint space without recourse to new US hardware or a new measurement. We test the approach on phantoms and on a healthy human finger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea level rise (SLR) is a primary factor responsible for inundation of low-lying coastal regions across the world, which in turn governs the agricultural productivity. In this study, rice (Oryza sativa L.) cultivated seasonally in the Kuttanad Wetland, a SLR prone region on the southwest coast of India, were analysed for oxygen, hydrogen and carbon isotopic ratios (delta O-18, delta H-2 and delta C-13) to distinguish the seasonal environmental conditions prevalent during rice cultivation. The region receives high rainfall during the wet season which promotes large supply of fresh water to the local water bodies via the rivers. In contrast, during the dry season reduced river discharge favours sea water incursion which adversely affects the rice cultivation. The water for rice cultivation is derived from regional water bodies that are characterised by seasonal salinity variation which co-varies with the delta O-18 and delta H-2 values. Rice cultivated during the wet and the dry season bears the isotopic imprints of this water. We explored the utility of a mechanistic model to quantify the contribution of two prominent factors, namely relative humidity and source water composition in governing the seasonal variation in oxygen isotopic composition of rice grain OM. delta C-13 values of rice grain OM were used to deduce the stress level by estimating the intrinsic water use efficiency (WUEi) of the crop during the two seasons. 1.3 times higher WUE, was exhibited by the same genotype during the dry season. The approach can be extended to other low lying coastal agro-ecosystems to infer the growth conditions of cultivated crops and can further be utilised for retrieving paleo-environmental information from well preserved archaeological plant remains. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the multiferroic and glassy behaviour of metal-organic framework (MOF) material (CH3)(2)NH2Co(CHOO)(3). The compound has perovskite-like architecture in which the metal-formate forms a framework. The organic cation (CH3)(2)NH2+ occupies the cavities in the formate framework in the framework via N-H center dot center dot center dot O hydrogen bonds. At room temperature, the organic cation is disordered and occupies three crystallographically equivalent positions. Upon cooling, the organic cation is ordered which leads to a structural phase transition at 155 K. The structural phase transition is associated with a para-ferroelectric phase transition and is revealed by dielectric and pyroelectric measurements. Further, a PE hysteresis loop below 155 K confirms the ferroelectric behaviour of the material. Analysis of dielectric data reveal large frequency dispersion in the values of dielectric constant and tan delta which signifies the presence of glassy dielectric behaviour. The material displays a antiferromagnetic ordering below 15 K which is attributed to the super-exchange interaction between Co2+ ions mediated via formate linkers. Interestingly, another magnetic transition is also found around 11 K. The peak of the transition shifts to lower temperature with increasing frequency, suggesting glassy magnetism in the sample. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of a molecule or group with an atom which is less electronegative than oxygen (0) and directly interacting with the surface is very relevant to development of PtM (M = 3d-transition metal) catalysts with high activity. Here, we present theoretical analysis of the adsorption of NH3 molecule (N being less electronegative than 0) on (111) surfaces of PtM (Fe, Co, Ni) alloys using the first principles density functional approach. We find that, while NH3-Pt interaction is stronger than that of NH3 with the elemental M-surfaces, it is weaker than the strength of interaction of NH3 with M-site on the surface of PtM alloy. (C) 2016 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum, spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1-100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves; beta(m,perpendicular to) is seen to be less than, that:measured parallel to grooves, beta(m,perpendicular to).The difference between beta(m,perpendicular to), and beta(m,parallel to) increases with drop impact velocity. This deviation of beta(m,perpendicular to) from beta(m,parallel to) is analyzed by considering the possible mechanisms, correspond, ing to experimental observations (1) impregnation of drop into the grooves, (2) convex shape of liquid vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edges by incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed: deviation of beta(m,perpendicular to) from beta(m,parallel to) compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts beta(m,perpendicular to) on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters,on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning, absent, predicts beta(m,parallel to) with an average error of 6.3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a molecular model for octamethylcydotetrasiloxane (OMCTS), molecular dynamics simulations are carried out to probe the phase state of OMCTS confined between two mica surfaces in equilibrium With a reservoir. Molecular dynamics simulations are carried out for elevations ranging from 5 to 35 K above the melting point for the OMCTS model used in this study. The Helmholtz free energy is, computed for a specific confinement using the :two-phase thermodynamic (2PT) method. Analysis of the in-plane pair correlation functions did not reveal signatures of freezing even under an extreme confinement of two layers. OMCTS is found to orient with a wide distribution of orientations with respect to the mica surface, with a distinct preference for the surface parallel configuration in the contact layers. The self-intermediate scattering function is found to decay with increasing relaxation times as the surface separation is decreased, and the two-step relaxation in the scattering function, a signature of glassy dynamics, distinctly evolves as the temperature is lowered. However, even at 5 K above the melting point, we did not observe a freezing transition and the self-intermediate scattering functions relax within 200 ps for the seven-layered confined system. The self diffusivity and relaxation times obtained from the Kohlrausch-Williams-Watts stretched exponential fits to the late alpha-relaxation exhibit power law scalings with the packing fraction as predicted by mode coupling theory. A distinct discontinuity in the Helmholtz free energy, potential energy, and a sharp change in the local bond order parameter, Q(4), was observed at 230 K for a five-layered system upon cooling, indicative of a first-order transition. A freezing point depression of about 30 K was observed for this five-layered confined system, and at the lower temperatures, contact layers were found to be disordered with long-range order present only in the inner layers. These dynamical signatures indicate that confined OMCTS undergoes a slowdown akin to a fluid approaching a glass transition upon increasing confinement, and freezing under confinement would require substantial subcooling below the bulk melting point of OMCTS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, polymer diode performance was analyzed by using nickel as anode electrode from two kinds of nickel as starting materials, namely nickel wire Ni{B} and nickel nano-particle Ni{N}. Metal electrode surface roughness and grain morphology were investigated by atomic force microscope and scanning electron microscope, respectively. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured for the fabricated device at room temperature. Obtained result from the current-voltage characteristics shows an increment in the current density for nickel nano-particle top electrode device. The increase in the current density could be due to a reduction in built-in voltage at P3HT/Ni{N} interface.