903 resultados para OLIGOMERIC ASSEMBLY
Resumo:
Injection of min K mRNA into Xenopus oocytes results in expression of slowly activating voltage-dependent potassium channels, distinct from those induced by expression of other cloned potassium channels. The min K protein also differs in structure, containing only a single predicted transmembrane domain. While it has been demonstrated that all other cloned potassium channels form by association of four independent subunits, the number of min K monomers which constitute a functional channel is unknown. In rat min K, replacement of Ser-69 by Ala (S69A) causes a shift in the current-voltage (I-V) relationship to more depolarized potentials; currents are not observed at potentials negative to 0 mV. To determine the subunit stoichiometry of min K channels, wild-type and S69A subunits were coexpressed. Injections of a constant amount of wild-type mRNA with increasing amounts of S69A mRNA led to potassium currents of decreasing amplitude upon voltage commands to -20 mV. Applying a binomial distribution to the reduction of current amplitudes as a function of the different coinjection mixtures yielded a subunit stoichiometry of at least 14 monomers for each functional min K channel. A model is presented for how min K subunits may form a channel.
Resumo:
Tropomyosins consist of nearly 100% alpha-helix and assemble into parallel and in-register coiled-coil dimers. In vitro it has been established that nonmuscle as well as native muscle tropomyosins can form homodimers. However, a mixture of muscle alpha and beta tropomyosin subunits results in the formation of the thermodynamically more stable alpha/beta heterodimer. Although the assembly preference of the muscle tropomyosin heterodimer can be understood thermodynamically, the presence of multiple tropomyosin isoforms expressed in nonmuscle cells points toward a more complex principle for determining dimer formation. We have investigated the dimerization of rat tropomyosins in living cells by the use of epitope tagging with a 16-aa sequence of the influenza hemagglutinin. Employing transfection and immunoprecipitation techniques, we have analyzed the dimers formed by muscle and nonmuscle tropomyosins in rat fibroblasts. We demonstrate that the information for homo- versus heterodimerization is contained within the tropomyosin molecule itself and that the information for the selectivity is conferred by the alternatively spliced exons. These results have important implications for models of the regulation of cytoskeletal dynamics.
Resumo:
A 22-kDa protein, caveolin, is localized to the cytoplasmic surface of plasma membrane specializations called caveolae. We have proposed that caveolin may function as a scaffolding protein to organize and concentrate signaling molecules within caveolae. Here, we show that caveolin interacts with itself to form homooligomers. Electron microscopic visualization of these purified caveolin homooligomers demonstrates that they appear as individual spherical particles. By using recombinant expression of caveolin as a glutathione S-transferase fusion protein, we have defined a region of caveolin's cytoplasmic N-terminal domain that mediates these caveolin-caveolin interactions. We suggest that caveolin homooligomers may function to concentrate caveolin-interacting molecules within caveolae. In this regard, it may be useful to think of caveolin homooligomers as "fishing lures" with multiple "hooks" or attachment sites for caveolin-interacting molecules.
Resumo:
One of the hallmarks of Alzheimer disease is the pathological aggregation of tau protein into paired helical filaments (PHFs) and neurofibrillary tangles. Here we describe the in vitro assembly of recombinant tau protein and constructs derived from it into PHFs. Though whole tau assembled poorly, constructs containing three internal repeats (corresponding to the fetal tau isoform) formed PHFs reproducibly. This ability depended on intermolecular disulfide bridges formed by the single Cys-322. Blocking the SH group, mutating Cys for Ala, or keeping tau in a reducing environment all inhibited assembly. With constructs derived from four-repeat tau (having the additional repeat no. 2 and a second Cys-291), PHF assembly was blocked because Cys-291 and Cys-322 interact within the molecule. PHF assembly was enabled again by mutating Cys-291 for Ala. The synthetic PHFs bound the dye thioflavin S used in Alzheimer disease diagnostics. The data imply that the redox potential in the neuron is crucial for PHF assembly, independently or in addition to pathological phosphorylation reactions.
Resumo:
The tendency of a polypeptide chain to form alpha-helical or beta-strand secondary structure depends upon local and nonlocal effects. Local effects reflect the intrinsic propensities of the amino acid residues for particular secondary structures, while nonlocal effects reflect the positioning of the individual residues in the context of the entire amino acid sequence. In particular, the periodicity of polar and nonpolar residues specifies whether a given sequence is consistent with amphiphilic alpha-helices or beta-strands. The importance of intrinsic propensities was compared to that of polar/nonpolar periodicity by a direct competition. Synthetic peptides were designed using residues with intrinsic propensities that favored one or the other type of secondary structure. The polar/nonpolar periodicities of the peptides were designed either to be consistent with the secondary structure favored by the intrinsic propensities of the component residues or in other cases to oppose these intrinsic propensities. Characterization of the synthetic peptides demonstrated that in all cases the observed secondary structure correlates with the periodicity of the peptide sequence--even when this secondary structure differs from that predicted from the intrinsic propensities of the component amino acids. The observed secondary structures are concentration dependent, indicating that oligomerization of the amphiphilic peptides is responsible for the observed secondary structures. Thus, for self-assembling oligomeric peptides, the polar/nonpolar periodicity can overwhelm the intrinsic propensities of the amino acid residues and serves as the major determinant of peptide secondary structure.
Resumo:
We have previously shown that protein phosphorylation plays an important role in the sorting and assembly of tight junctions. We have now examined in detail the role of protein kinases in intercellular junction biogenesis by using a combination of highly specific and broad-spectrum inhibitors that act by independent mechanisms. Our data indicate that protein kinase C (PKC) is required for the proper assembly of tight junctions. Low concentrations of the specific inhibitor of PKC, calphostin C, markedly inhibited development of transepithelial electrical resistance, a functional measure of tight-junction biogenesis. The effect of PKC inhibitors on the development of tight junctions, as measured by resistance, was paralleled by a delay in the sorting of the tight-junction protein, zona occludens 1 (ZO-1), to the tight junction. The assembly of desmosomes and the adherens junction were not detectably affected, as determined by immunocytochemical analysis. In addition, ZO-1 was phosphorylated subsequent to the initiation of cell-cell contact, and treatment with calphostin C prevented approximately 85% of the phosphorylation increase. Furthermore, in vitro measurements indicate that ZO-1 may be a direct target of PKC. Moreover, membrane-associated PKC activity more than doubled during junction assembly, and immunocytochemical analysis revealed a pool of PKC zeta that appeared to colocalize with ZO-1 at the tight junction. A preformed complex containing ZO-1, ZO-2, p130, as well as 330- and 65-kDa phosphoproteins was detected by coimmunoprecipitation in both the presence and absence of cell-cell contact. Identity of the 330- and 65-kDa phosphoproteins remains to be determined, but the 65-kDa protein may be occludin. The mass of this complex and the incorporation of ZO-1 into the Triton X-100-insoluble cytoskeleton were not PKC dependent.
Resumo:
The Escherichia coli rpoB gene, which codes for the 1342-residue beta subunit of RNA polymerase (RNAP), contains two dispensable regions centered around codons 300 and 1000. To test whether these regions demarcate domains of the RNAP beta subunit, fragments encoded by segments of rpoB flanking the dispensable regions were individually overexpressed and purified. We show that these beta-subunit polypeptide fragments, when added with purified recombinant beta', sigma, and alpha subunits of RNAP, reconstitute a functional enzyme in vitro. These results demonstrate that the beta subunit is composed of at least three distinct domains and open another avenue for in vitro studies of RNAP assembly and structure.
Resumo:
Rhodopsin folding and assembly were investigated by expression of five bovine opsin gene fragments separated at points corresponding to proteolytic cleavage sites in the second or third cytoplasmic regions. The CH(1-146) and CH(147-348) gene fragments encode amino acids 1-146 and 147-348 of opsin, while the TH(1-240) and TH(241-348) gene fragments encode amino acids 1-240 and 241-348, respectively. Another gene fragment, CT(147-240), encodes amino acids 147-240. All five opsin polypeptide fragments were stably produced upon expression of the corresponding gene fragments in COS-1 cells. The singly expressed polypeptide fragments failed to form a chromophore with 11-cis-retinal, whereas coexpression of two or three complementary fragments [CH(1-146) + CH(147-348), TH(1-240) + TH(241-348), or CH(1-146) + CT(147-240) + TH(241-348)] formed pigments with spectral properties similar to wild-type rhodopsin. The NH2-terminal polypeptide in these rhodopsins showed a glycosylation pattern characteristic of wild-type COS-1 cell rhodopsin and was noncovalently associated with its complementary fragment(s). Further, the CH(1-146) + CH(147-348) rhodopsin showed substantial light-dependent activation of transducin. We conclude that the functional assembly of rhodopsin is mediated by the association of at least three protein-folding domains.
Resumo:
Among the toxic polypeptides secreted in the venom of sea anemones, actinoporins are pore forming toxins whose toxic activity relies on the formation of oligomeric pores within biological membranes. Intriguingly, actinoporins appear as multigene families which give rise to many protein isoforms in the same individual displaying high sequence identities but large functional differences. However, the evolutionary advantage of producing such similar isotoxins is not fully understood. Here, using sticholysins I and II (StnI and StnII) from the sea anemone Stichodactyla helianthus, it is shown that actinoporin isoforms can potentiate each other’s activity. Through hemolysis and calcein releasing assays, it is revealed that mixtures of StnI and StnII are more lytic than equivalent preparations of the corresponding isolated isoforms. It is then proposed that this synergy is due to the assembly of heteropores since (i) StnI and StnII can be chemically cross-linked at the membrane and (ii) the affinity of sticholysin mixtures for the membrane is increased with respect to any of them acting in isolation, as revealed by isothermal titration calorimetry experiments. These results help to understand the multigene nature of actinoporins and may be extended to other families of toxins that require oligomerization to exert toxicity.
Resumo:
Among the toxic polypeptides secreted in the venom of sea anemones, actinoporins are the pore-forming toxins whose toxic activity relies on the formation of oligomeric pores within biological membranes. Intriguingly, actinoporins appear as multigene families that give rise to many protein isoforms in the same individual displaying high sequence identities but large functional differences. However, the evolutionary advantage of producing such similar isotoxins is not fully understood. Here,using sticholysins I and II (StnI and StnII) from the sea anemone Stichodactyla helianthus, it is shown that actinoporin isoforms can potentiate each other’s activity. Through hemolysis and calcein releasing assays, it is revealed that mixtures of StnI and StnII are more lytic than equivalent preparations of the corresponding isolated isoforms. It is then proposed that this synergy is due to the assembly of heteropores because (i) StnI and StnII can be chemically cross-linked at the membrane and (ii) the affinity of sticholysin mixtures for the membrane is increased with respect to any of them acting in isolation, as revealed by isothermal titration calorimetry experiments. These results help us understand the multigene nature of actinoporins and may be extended to other families of toxins that require oligomerization to exert toxicity.
Resumo:
The accumulation of microtubule-associated protein tau into fibrillar aggregates is the hallmark of Alzheimer’s disease and other neurodegenerative disorders, collectively referred to as tauopathies. Fibrils can propagate from one cell to the next and spread throughout the brain. However, a study shows that only small aggregates can be taken up by cultured neuronal cells. The mechanisms that lead to the breakage of fibrils into smaller fragments remain unknown. In yeast, the AAA+ chaperone HSP104 processes the reactivation of protein aggregates and is responsible for fragmentation of fibrils. This study focused on investigating the effects of molecular chaperones on tau fibrils and using HSP104 as a model system to test whether we can monitor fibril fracturing. The assays used to detect the chaperone’s actions on tau utilized acrylodan fluorescence, thioflavin T fluorescence, and sedimentation. Tau fibrils were either formed with a cofactor, heparin, to accelerate assembly or without a cofactor. In the process of investigating the effects of HSP104 on tau fibrils, this study established an assay to determine the effects of breakage on the seeding properties of tau fibrils. Our findings demonstrated that the sonication of tau fibrils produces smaller fragments (seeds) that accelerate the conversion of monomeric tau into fibrils. The use of this assay with HSP104 provided evidence that HSP104 inhibits the elongation of tau fibrils. Indeed, HSP104 inhibits the aggregation of soluble tau into aggregates. However, tau fibril breakage and dissociation were not observed with HSP104, either alone or in combination with co-chaperones (HSP70 and HSP40). Our findings provide insights into the seeding properties of tau fibrils, and suggest that fragmentation is a critical part of tau assembly. This knowledge should be valuable for understanding tau fibril aggregation and propagation in the brain, which is necessary to identify new treatments for neurodegenerative diseases.
Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid
Resumo:
Poly(lactic acid) (PLA) was melt-blended with a bio-based oligomeric lactic acid (OLA) plasticizer at different concentrations between 15 wt% and 25 wt% in order to enhance PLA ductility and to get a fully biodegradable material with potential application in films manufacturing. OLA was an efficient plasticizer for PLA, as it caused a significant decrease on glass transition temperature (Tg) while improving considerably ductile properties. Only one Tg value was observed in all cases and no apparent phase separation was detected. Films obtained by compression moulding were stored during 3 months under ambient controlled conditions and thermal, mechanical, structural and oxygen barrier properties were studied in order to evaluate the stability of the PLA–OLA films over time. Blends with 20 and 25 wt% OLA remained stable and compatible with PLA within the ageing period. Besides, PLA–20 wt% OLA formulation was the only one which maintained its amorphous state with adequate thermal, mechanical and oxygen barrier properties for flexible films manufacturing.
Resumo:
Contains one of the few original copies of Penn's laws as first passed and as revised and extended in the following year. During the interval between the two Assemblies, while Penn was absent in England, the first series of laws were found to be impracticable, and new amendments were made for which Penn had no choice but to agree to.
Resumo:
An Act of Assembly of Barbadoes to regulate sales at outcry and the proceedings of persons executing the office of Provost Marshall General of the said island and their under officers (leaf 1) ; A state of some matters relative to the office of Provost Marshall, and to the passing of this bill (leaf 9) ; Observations drawn up by Jonathan Blenman Esq. his Majestys Atty. Gen. in Barbadoes ... on the Act as it had been first brought in 1761 (leaf 13) ; and two leaves laid in ; Power of attorney, granted to Christopher Scandrett, signed by Francis Reynolds and his son Thomas (25 April 1766) ; Petition of Francis Reynolds to the Lords Commissioners of Trade and Plantations (1766).