912 resultados para Numerical Analysis and Computation
Resumo:
Objective: In this secondary data analysis, three statistical methodologies were implemented to handle cases with missing data in a motivational interviewing and feedback study. The aim was to evaluate the impact that these methodologies have on the data analysis. ^ Methods: We first evaluated whether the assumption of missing completely at random held for this study. We then proceeded to conduct a secondary data analysis using a mixed linear model to handle missing data with three methodologies (a) complete case analysis, (b) multiple imputation with explicit model containing outcome variables, time, and the interaction of time and treatment, and (c) multiple imputation with explicit model containing outcome variables, time, the interaction of time and treatment, and additional covariates (e.g., age, gender, smoke, years in school, marital status, housing, race/ethnicity, and if participants play on athletic team). Several comparisons were conducted including the following ones: 1) the motivation interviewing with feedback group (MIF) vs. the assessment only group (AO), the motivation interviewing group (MIO) vs. AO, and the intervention of the feedback only group (FBO) vs. AO, 2) MIF vs. FBO, and 3) MIF vs. MIO.^ Results: We first evaluated the patterns of missingness in this study, which indicated that about 13% of participants showed monotone missing patterns, and about 3.5% showed non-monotone missing patterns. Then we evaluated the assumption of missing completely at random by Little's missing completely at random (MCAR) test, in which the Chi-Square test statistic was 167.8 with 125 degrees of freedom, and its associated p-value was p=0.006, which indicated that the data could not be assumed to be missing completely at random. After that, we compared if the three different strategies reached the same results. For the comparison between MIF and AO as well as the comparison between MIF and FBO, only the multiple imputation with additional covariates by uncongenial and congenial models reached different results. For the comparison between MIF and MIO, all the methodologies for handling missing values obtained different results. ^ Discussions: The study indicated that, first, missingness was crucial in this study. Second, to understand the assumptions of the model was important since we could not identify if the data were missing at random or missing not at random. Therefore, future researches should focus on exploring more sensitivity analyses under missing not at random assumption.^
Resumo:
The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.
Resumo:
Cryoablation for small renal tumors has demonstrated sufficient clinical efficacy over the past decade as a non-surgical nephron-sparing approach for treating renal masses for patients who are not surgical candidates. Minimally invasive percutaneous cryoablations have been performed with image guidance from CT, ultrasound, and MRI. During the MRI-guided cryoablation procedure, the interventional radiologist visually compares the iceball size on monitoring images with respect to the original tumor on separate planning images. The comparisons made during the monitoring step are time consuming, inefficient and sometimes lack the precision needed for decision making, requiring the radiologist to make further changes later in the procedure. This study sought to mitigate uncertainty in these visual comparisons by quantifying tissue response to cryoablation and providing visualization of the response during the procedure. Based on retrospective analysis of MR-guided cryoablation patient data, registration and segmentation algorithms were investigated and implemented for periprocedural visualization to deliver iceball position/size with respect to planning images registered within 3.3mm with at least 70% overlap and a quantitative logit model was developed to relate perfusion deficit in renal parenchyma visualized in verification images as a result of iceball size visualized in monitoring images. Through retrospective study of 20 patient cases, the relationship between likelihood of perfusion loss in renal parenchyma and distance within iceball was quantified and iteratively fit to a logit curve. Using the parameters from the logit fit, the margin for 95% perfusion loss likelihood was found to be 4.28 mm within the iceball. The observed margin corresponds well with the clinically accepted margin of 3-5mm within the iceball. In order to display the iceball position and perfusion loss likelihood to the radiologist, algorithms were implemented to create a fast segmentation and registration module which executed in under 2 minutes, within the clinically-relevant 3 minute monitoring period. Using 16 patient cases, the average Hausdorff distance was reduced from 10.1mm to 3.21 mm with average DSC increased from 46.6% to 82.6% before and after registration.
Resumo:
http://lib.dr.iastate.edu/libaccess_workshops/1001/thumbnail.jpg
Resumo:
The Greenland ice sheet is accepted as a key factor controlling the Quaternary glacial scenario. However, the origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma are still controversial. For this phase of intense cooling Ravelo et al. proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 °C surface water warming during warm stages from 2.95 to 2.82 Ma. These records support previous models, claiming that the final closure of the Panama Isthmus (3.0- ~2.5 Ma induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic Thermohaline Circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at marine isotope stage G6 (2.74 Ma). In summary, there was a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today.
Resumo:
Sarcya 1 dive explored a previously unknown 12 My old submerged volcano, labelled Cornacya. A well developed fracturation is characterised by the following directions: N 170 to N-S, N 20 to N 40, N 90 to N 120, N 50 to N 70, which corresponds to the fracturation pattern of the Sardinian margin. The sampled lavas exhibit features of shoshonitic suites of intermediate composition and include amphibole-and mica-bearing lamprophyric xenoliths which are geochemically similar to Ti-poor lamproites. Mica compositions reflect chemical exchanges between the lamprophyre and its shoshonitic host rock suggesting their simultaneous emplacement. Nd compositions of the Cornacya K-rich suite indicate that continental crust was largely involved in the genesis of these rocks. The spatial association of the lamprophyre with the shoshonitic rocks is geochemically similar to K-rich and TiO2-poor igneous suites, emplaced in post-collisional settings. Among shoshonitic rocks, sample SAR 1-01 has been dated at 12.6±0.3 My using the 40Ar/39Ar method with a laser microprobe on single grains. The age of the Cornacya shoshonitic suite is similar to that of the Sisco lamprophyre from Corsica, which similarly is located on the western margin of the Tyrrhenian Sea. Thus, the Cornacya shoshonitic rocks and their lamprophyric xenolith and the Sisco lamprophyre could represent post-collisional suites emplaced during the lithospheric extension of the Corsica-Sardinia block, just after its rotation and before the Tyrrhenian sea opening. Drilling on the Sardinia margin (ODP Leg 107) shows that the upper levels of the present day margin (Hole 654) suffered tectonic subsidence before the lower part (Hole 652). The structure of this lower part is interpreted as the result of an eastward migration of the extension during Late Miocene and Early Pliocene times. Data of Cornacya volcano are in good agreement with this model and provide good chronological constraints for the beginning of the phenomenon.
Resumo:
A multivariable approach utilising bulk sediment, planktonic Foraminifera and siliceous phytoplankton has been used to reconstruct rapid variations in palaeoproductivity in the Peru-Chile Current System off northern Chile for the past 19000 cal. yr. During the early deglaciation (19000-16000 cal. yr BP), our data point to strongest upwelling intensity and highest productivity of the past 19 000 cal. yr. The late deglaciation (16000-13000 cal. yr BP) is characterised by a major change in the oceanographic setting, warmer water masses and weaker upwelling at the study site. Lowest productivity and weakest upwelling intensity are observed from the early to the middle Holocene (13000-4000 cal. yr BP), and the beginning of the late Holocene (<4000 cal. yr BP) is marked by increasing productivity, mainly driven by silicate-producing organisms. Changes in the productivity and upwelling intensity in our record may have resulted from a large-scale compression and/or displacement of the South Pacific subtropical gyre during more productive periods, in line with a northward extension of the Antarctic Circumpolar Current and increased advection of Antarctic water masses with the Peru-Chile Current. The corresponding increase in hemispheric thermal gradient and wind stress induced stronger upwelling. During the periods of lower productivity, this scenario probably reversed.
Resumo:
Objective: The present study offers a novel methodological contribution to the study of the configuration and dynamics of research groups, through a comparative perspective of the projects funded (inputs) and publication co-authorships (output). Method: A combination of bibliometric techniques and social network analysis was applied to a case study: the Departmento de Bibliotecología (DHUBI), Universidad Nacional de La Plata, Argentina, for the period 2000-2009. The results were interpreted statistically and staff members of the department, were interviewed. Results: The method makes it possible to distinguish groups, identify their members and reflect group make-up through an analytical strategy that involves the categorization of actors and the interdisciplinary and national or international projection of the networks that they configure. The integration of these two aspects (input and output) at different points in time over the analyzed period leads to inferences about group profiles and the roles of actors. Conclusions: The methodology presented is conducive to micro-level interpretations in a given area of study, regarding individual researchers or research groups. Because the comparative input-output analysis broadens the base of information and makes it possible to follow up, over time, individual and group trends, it may prove very useful for the management, promotion and evaluation of science
Resumo:
Objective: The present study offers a novel methodological contribution to the study of the configuration and dynamics of research groups, through a comparative perspective of the projects funded (inputs) and publication co-authorships (output). Method: A combination of bibliometric techniques and social network analysis was applied to a case study: the Departmento de Bibliotecología (DHUBI), Universidad Nacional de La Plata, Argentina, for the period 2000-2009. The results were interpreted statistically and staff members of the department, were interviewed. Results: The method makes it possible to distinguish groups, identify their members and reflect group make-up through an analytical strategy that involves the categorization of actors and the interdisciplinary and national or international projection of the networks that they configure. The integration of these two aspects (input and output) at different points in time over the analyzed period leads to inferences about group profiles and the roles of actors. Conclusions: The methodology presented is conducive to micro-level interpretations in a given area of study, regarding individual researchers or research groups. Because the comparative input-output analysis broadens the base of information and makes it possible to follow up, over time, individual and group trends, it may prove very useful for the management, promotion and evaluation of science
Resumo:
Assemblages of organic-walled dinoflagellate cysts (dinocysts) from 116 marine surface samples have been analysed to assess the relationship between the spatial distribution of dinocysts and modern local environmental conditions [e.g. sea surface temperature (SST), sea surface salinity (SSS), productivity] in the eastern Indian Ocean. Results from the percentage analysis and statistical methods such as multivariate ordination analysis and end-member modelling, indicate the existence of three distinct environmental and oceanographic regions in the study area. Region 1 is located in western and eastern Indonesia and controlled by high SSTs and a low nutrient content of the surface waters. The Indonesian Throughflow (ITF) region (Region 2) is dominated by heterotrophic dinocyst species reflecting the region's high productivity. Region 3 is encompassing the area offshore north-west and west Australia which is characterised by the water masses of the Leeuwin Current, a saline and nutrient depleted southward current featuring energetic eddies.
Resumo:
Objective: The present study offers a novel methodological contribution to the study of the configuration and dynamics of research groups, through a comparative perspective of the projects funded (inputs) and publication co-authorships (output). Method: A combination of bibliometric techniques and social network analysis was applied to a case study: the Departmento de Bibliotecología (DHUBI), Universidad Nacional de La Plata, Argentina, for the period 2000-2009. The results were interpreted statistically and staff members of the department, were interviewed. Results: The method makes it possible to distinguish groups, identify their members and reflect group make-up through an analytical strategy that involves the categorization of actors and the interdisciplinary and national or international projection of the networks that they configure. The integration of these two aspects (input and output) at different points in time over the analyzed period leads to inferences about group profiles and the roles of actors. Conclusions: The methodology presented is conducive to micro-level interpretations in a given area of study, regarding individual researchers or research groups. Because the comparative input-output analysis broadens the base of information and makes it possible to follow up, over time, individual and group trends, it may prove very useful for the management, promotion and evaluation of science
Resumo:
We have performed quantitative X-ray diffraction (qXRD) analysis of 157 grab or core-top samples from the western Nordic Seas between (WNS) ~57°-75°N and 5° to 45° W. The RockJock Vs6 analysis includes non-clay (20) and clay (10) mineral species in the <2 mm size fraction that sum to 100 weight %. The data matrix was reduced to 9 and 6 variables respectively by excluding minerals with low weight% and by grouping into larger groups, such as the alkali and plagioclase feldspars. Because of its potential dual origins calcite was placed outside of the sum. We initially hypothesized that a combination of regional bedrock outcrops and transport associated with drift-ice, meltwater plumes, and bottom currents would result in 6 clusters defined by "similar" mineral compositions. The hypothesis was tested by use of a fuzzy k-mean clustering algorithm and key minerals were identified by step-wise Discriminant Function Analysis. Key minerals in defining the clusters include quartz, pyroxene, muscovite, and amphibole. With 5 clusters, 87.5% of the observations are correctly classified. The geographic distributions of the five k-mean clusters compares reasonably well with the original hypothesis. The close spatial relationship between bedrock geology and discrete cluster membership stresses the importance of this variable at both the WNS-scale and at a more local scale in NE Greenland.
Resumo:
Fluid circulation in peridotite-hosted hydrothermal systems influences the incorporation of carbon into the oceanic crust and its long-term storage. At low to moderate temperatures, serpentinization of peridotite produces alkaline fluids that are rich in CH4 and H2. Upon mixing with seawater, these fluids precipitate carbonate, forming an extensive network of calcite veins in the basement rocks, while H2 and CH4 serve as an energy source for microorganisms. Here, we analyzed the carbon geochemistry of two ancient peridotite-hosted hydrothermal systems: 1) ophiolites cropping out in the Northern Apennines, and 2) calcite-veined serpentinites from the Iberian Margin (Ocean Drilling Program (ODP) Legs 149 and 173), and compare them to active peridotite-hosted hydrothermal systems such as the Lost City hydrothermal field (LCHF) on the Atlantis Massif near the Mid-Atlantic Ridge (MAR). Our results show that large amounts of carbonate are formed during serpentinization of mantle rocks exposed on the seafloor (up to 9.6 wt.% C in ophicalcites) and that carbon incorporation decreases with depth. In the Northern Apennine serpentinites, serpentinization temperatures decrease from 240 °C to < 150 °C, while carbonates are formed at temperatures decreasing from ~ 150 °C to < 50 °C. At the Iberian Margin both carbonate formation and serpentinization temperatures are lower than in the Northern Apennines with serpentinization starting at ~ 150 °C, followed by clay alteration at < 100 °C and carbonate formation at < 19-44 °C. Comparison with various active peridotite-hosted hydrothermal systems on the MAR shows that the serpentinites from the Northern Apennines record a thermal evolution similar to that of the basement of the LCHF and that tectonic activity on the Jurassic seafloor, comparable to the present-day processes leading to oceanic core complexes, probably led to formation of fractures and faults, which promoted fluid circulation to greater depth and cooling of the mantle rocks. Thus, our study provides further evidence that the Northern Apennine serpentinites host a paleo-stockwork of a hydrothermal system similar to the basement of the LCHF. Furthermore, we argue that the extent of carbonate uptake is mainly controlled by the presence of fluid pathways. Low serpentinization temperatures promote microbial activity, which leads to enhanced biomass formation and the storage of organic carbon. Organic carbon becomes dominant with increasing depth and is the principal carbon phase at more than 50-100 m depth of the serpentinite basement at the Iberian Margin. We estimate that annually 1.1 to 2.7 × 1012 g C is stored within peridotites exposed to seawater, of which 30-40% is fixed within the uppermost 20-50 m mainly as carbonate. Additionally, we conclude that alteration of oceanic lithosphere is an important factor in the long-term global carbon cycle, having the potential to store carbon for millions of years.
Resumo:
The bimodal, alkaline volcanic suite of the Kap Washington Group (KWG) at the northern coast of Greenland was investigated during the BGR CASE 2 expedition in 1994. Geochemical and Nd and Sr isotopic data are presented for basalts to rhyolites of the KWG and of related basaltic dykes cutting Lower Paleozoic sediments. In the evd(t) vs. (87Sr/86Sr)t diagram, the KWG basalts and rhyolites follow a common mixing trend with increasing crustal contamination from basic to acid volcanites. Assimilation of pre-existing crustal rocks during formation of the rhyolitic melt is documented by Nd model ages of 0.9-1.2 Ga and by different fractionation trends for the basalts and the rhyolites in the Y vs. Zr diagram. Petrographical and geochemical features indicate intra-plate volcanism which was active most probably during a continental rifting phase. A new Rb/Sr whole rock age on rhyolites of 64 ±3 Ma, corresponding to the result of LARSEN (1982), confirms that the volcanic activity lasted until the Cretaceous-Tertiary boundary. 40Ar139Ar dating on amphibol separates from a comendite yielded strongly disturbed age spectra with a minimum age of 37.7 ±0.3 Ma. This age is interpreted to date a hydrothermal overprint of the volcanic rocks related to compressive tectonics which led to the overthrust of basement rocks over the Kap Washington Group.