986 resultados para Nuclear radiation.
Resumo:
Somatic cell nuclear transfer (SCNT) is a remarkable process in which a somatic cell nucleus is acted upon by the ooplasm via mechanisms that today remain unknown. Here we show the developmental competence (% blastocyst) of embryos derived from SCNT (21%)
Resumo:
The combined effect of radiation and refrigeration on the shelf life of hilsa, Tanualosa ilisha was studied by monitoring the microbiological, chemical and sensory changes of unirradiated and irradiated fish samples using low dose irradiation, doses of 300 krad, 600 krad and 900 krad. Irradiation (900 krad) dramatically reduced population of bacteria, namely total viable counts 48.850cfu per gm for unirradiated, 31.850cfu per gm and 19.600cfu per gm of 300 krad and 600 krad, respectively. The effect was more pronounced at the higher dose (900 krad), total viable count were 14.100cfu per gm. Another microbial indicator total mould counts (TMC) was 8.750cfu per gm, 6.350cfu per gm, and 19.600cfu per gm for 300 krad and 600 krad, respectively. The effect was more pronounced at the higher dose (900 krad) where total viable counts were 14,100cfu per gm. Total volatile nitrogen values increased slowly attaining a value of 101.02mgN per 100gm for unirradiated T. ilisha during refrigerated storage, whereas for irradiated fish, lower values of 71.13, 59.33 and 47.03mgN per 100gm muscle were recorded. Sensory evaluation showed a good correlation with bacterial populations on the basis of overall acceptability scores.
Resumo:
Gamma radiation (3, 6 and 9 kGy) in combination with low temperature (-20°C) were applied to retain the quality and shelf-life of shrimp, Penaeus monodon for a longer period. The quality was assessed by monitoring the chemical (TVN, TMA) and sensory changes in irradiated and non-irradiated (control) samples. Among chemical indicators of spoilage, total volatile nitrogen (TVN) values for irradiated shrimps were found to be 2.26, 2.18 and 1.57 mg N/100g of sample at 3, 6 and 9 kGy respectively after 90 days whereas for non-irradiated samples it was found 2.45mg N/100 g of sample. Trimethylamine (TMA) value for non-irradiated samples after 90 days were found 2.30mg N/100 g sample whereas that for irradiated shrimps at 3, 6 and 9 kGy were found to be 2.10, 2.08 and 1.98 mg N/100 g sample respectively. The sensory scores of control sample were gradually decreased with the progress of storage period. From this study, it was clear that gamma radiation in combination with low temperature showed shelf-life extension (90 days) in each dose of radiation used but during the use of 9 kGy radiation, P. monodon showed best quality.
Resumo:
In this study gamma radiation (3, 6 and 9 kGy) in combination with low temperature (-20°C) were applied to retain the quality and shelf-life of shrimp, Penaeus monodon for a longer period. The quality was assessed by monitoring microbiological changes (TBC, TMC, TYC, TCC and Salmonella count) in irradiated and non-irradiated (control) samples. Among microbiological indicators of spoilage, total bacterial count (TBC) values for irradiated shrimps were found to be 1875, 1625 and 1525 cfugˉ¹ of sample at 3, 6 and 9 kGy respectively after 90 days whereas for non-irradiated samples it was found 2475 cfugˉ¹ of sample. Total moulds count (TMC) value for non-irradiated samples after 90 days were found 425 cfugˉ¹ sample whereas that for irradiated shrimps at 3, 6 and 9 kGy were found to be 275, 250 and 200 cfugˉ¹ sample respectively. Total yeast count (TYC) value for non-irradiated samples after 90 days were found 4125 cfugˉ¹ sample whereas that for irradiated shrimps at 3, 6 and 9 kGy were found to be 2850, 2150 and 1725 cfugˉ¹ sample respectively. Total coliform count and Salmonella count showed that those were absent during 90 days storage period. From this study, it was clear that gamma radiation in combination with low temperature showed shelf-life extension (90 days) in each dose of radiation used but during the use of 9 kGy radiation, Penaeus monodon showed best quality.
Resumo:
The phylogenetic relationships among rhacophorid frogs are under dispute. We use partial sequences of three mitochondrial (12S rRNA, 16S rRNA, and cytochrome b) and three nuclear protein-coding (Rag-1 rhodopsin exon 1, and tyrosinase exon 1) genes from 57
Resumo:
Accumulating evidence suggests that unicellular Archezoa are the most primitive eukaryotes and their nuclei are of significance to the study of evolution of the eukaryotic nucleus. Nuclear matrix is an ubiquitous important structure of eukaryotic nucleus; its evolution is certainly one of the most important parts of the evolution of nucleus. To study the evolution of nuclear matrix, nuclear matrices of Archezoa are investigated. Giardia lamblia cells are extracted sequentially. Both embedment-free section EM and whole mount cell EM of the extracted cells show that, like higher eukaryotes, this species has a residual nuclear matrix in its nucleus and rich intermediate filaments in its cytoplasm, and the two networks connect with each other to form a united network. But its nuclear matrix does not have nucleolar matrix and its lamina is not as typical as that of higher eukaryotes; Western blotting shows that lamina of Giardia and two other Archezoa Entamoeba invadens and Trichomonas vaginali all contain only one polypeptide each which reacts with a mammalia anti-lamin polyclonal serum and is similar to lamin B (67 ku) of mammlia in molecular weight. According to the results and references, it is suggested that nuclear matrix is an early acquisition of the eukaryotic nucleus, and it and the "eukaryotic chromatin" as a whole must have originated very early in the process of evolution of eukaryotic cell, and their origin should be an important prerequisite of the origin of eukaryotic nucleus; in the iamin (gene) family, B-type lamins (gene) should be the ancestral type and that A-type lamins (gene) might derive therefrom.
Resumo:
Euglena gracilis cell was extracted sequentially with CSK-Triton buffer, RSB-Magik solution and DNase-As solution. DGD embedment-free electron microscopy showed that in the extracted nucleus there was a residual non-chromatin fibrous network. That it could not be removed by hot trichloroacetic acid further supported the idea that it was a non-histone, non-chromatin fibrous protein network, and should be the internal network of the nuclear matrix. After the sequential extraction, the nuclear membrane was removed, leaving behind a layer of lamina; the chromatin was digested and eluted from the dense chromosomes and residual chromosomal structures that should be chromosomal scaffold were revealed. Western blot analysis with antiserum against rat lamins showed that nuclear lamina of the cell possessed two positive polypeptides, a major one and a minor one, which had molecular masses similar to lamin B and lamin A, respectively. Comparing these data with those of the most primitive eukaryote Archezoa and of higher eukaryotes, it was suggested that the lower unicellular eukaryote E. gracillis already had the nuclear matrix structure, and its nuclear matrix (especially the lamina) might represent a stage of evolutionary history of the nuclear matrix. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Resumo:
Acoustic radiation from a spherical source undergoing angularly periodic axisymmetric harmonic surface vibrations while eccentrically suspended within a thermoviscous fluid sphere, which is immersed in a viscous thermally conducting unbounded fluid medium, is analyzed in an exact fashion. The formulation uses the appropriate wave-harmonic field expansions along with the translational addition theorem for spherical wave functions and the relevant boundary conditions to develop a closed-form solution in form of infinite series. The analytical results are illustrated with a numerical example in which the vibrating source is eccentrically positioned within a chemical fluid sphere submerged in water. The modal acoustic radiation impedance load on the source and the radiated far-field pressure are evaluated and discussed for representative values of the parameters characterizing the system. The proposed model can lead to a better understanding of dynamic response of an underwater acoustic lens. It is equally applicable in miniature transducer analysis and design with applications in medical ultrasonics.