967 resultados para Nuclear Energy
Resumo:
A Probabilistic Safety Assessment (PSA) is being developed for a steam-methane reforming hydrogen production plant linked to a High-Temperature Gas Cooled Nuclear Reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute’s (JAERI) High Temperature Test Reactor (HTTR) prototype in Japan. This study has two major objectives: calculate the risk to onsite and offsite individuals, and calculate the frequency of different types of damage to the complex. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The initiating events presented here are methane pipe break, helium pipe break, and PPWC heat exchanger pipe break. Generic data was used for the fault tree analysis and the initiating event frequency. Saphire was used for the PSA analysis. The results show that the average frequency of an accident at this complex is 2.5E-06, which is divided into the various end states. The dominant sequences result in graphite oxidation which does not pose a health risk to the population. The dominant sequences that could affect the population are those that result in a methane explosion and occur 6.6E-8/year, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR. Sensitivity studies are being performed in order to determine where additional and improved data is needed.
Resumo:
The nuclear fusion cross-section is modified when the spins of the interacting nuclei are polarized. In the case of deuterium?tritium it has been theoretically predicted that the nuclear fusion cross-section could be increased by a factor d = 1.5 if all the nuclei were polarized. In inertial confinement fusion this would result in a modification of the required ignition conditions. Using numerical simulations it is found that the required hot-spot temperature and areal density can both be reduced by about 15% for a fully polarized nuclear fuel. Moreover, numerical simulations of a directly driven capsule show that the required laser power and energy to achieve a high gain scale as d-0.6 and d-0.4 respectively, while the maximum achievable energy gain scales as d0.9.
Resumo:
En claro alineamiento con estrategias de sostenibilidad en el uso de recursos naturales en un escenario constante de aumento de la demanda energética mundial, el desarrollo de la tecnología energética en la Historia de la Especie Humana muestra un vector de evolución permanente desde su origen en el sentido del desarrollo y uso de nuevas fuentes energéticas con la explotación de recursos naturales de manera más eficiente: soluciones energéticas con aumento de la densidad energética (exoenergía de proceso por unidad de masa de recurso natural). Así el cambio de escala en la demanda de explotación del Litio como recurso natural se viene presentando en la última década ligada al desarrollo del mercado de las baterías "ion-Litio" y los requisitos de combustible (Deuterio y Litio) en el camino de la fusión nuclear como opción energética próxima. El análisis anticipado de las demandas sinérgicas a escala de ambos mercados aparece de enorme interés prospectivo en sus aspectos técnicos: (1) tecnologías de base para la extracción mineral y de agua marina y (2) su enriquecimiento isotópico (de interés sinérgico; 7Li para baterías eficientes ion-litio; 6Li como regenerador de tritio en ciclo de combustible en fusión nuclear) a la vez que en sus aspectos económicos. Este Proyecto realiza: (1) un ejercicio de análisis prospectivo de la demanda y de mercado para el enriquecimiento 6Li/7Li para las próximas décadas, (2) se califican los desarrollos tecnológicos específicos que van a poder permitir la producción a escala conforme a la demanda; (3) se selecciona y califica una técnica [de centrifugación / termo-difusión/ destilación combinada] como opción tecnológicamente viable para la producción a escala de formas litiadas; (4) se propone un diseño conceptual de planta de producción y finalmente (5) propone un estudio de viabilidad para la demostración de proceso y construcción de dicha planta de demostración de la nueva capacidad tecnológica. ABSTRACT Clearly aligned with sustainability strategies under growing world energy demand in the use of natural resources the development of energy technology in the history of the human species shows a vector of ongoing evolution from its origin in the sense of the development and use of new energy sources with the exploitation of natural resources in a more efficient manner. The change of scale in the demand for exploitation of Lithium as a natural resource appears during the last decade as bound to the deployment of "lithium-ion" batteries market and to the Nuclear Fusion fuels (deuterium and lithium) supply scaled demands. The prospective analysis of demands to scale in both markets appears in scene with huge prospective interest in its technical aspects: (1) base technologies for mineral and water marine extraction (2) its isotopic enrichment (synergistic interests; 7Li efficient battery Li-ion; 6Li as fusion nuclear fuel breeder (tritium) as well as in its economic aspects. This Project: (1) propose a prospective analysis exercise of the synergistic supply demand for coming decades for the enrichment of 6Li and 7Li, (2) qualifies specific technological developments ongoing to respond to supply demand; (3) select and qualifies an appropriate technique [combined centrifugation/thermo-diffusion/distillation] as technologically viable option for lithiated forms scaled-production; (4) proposes a conceptual design of production plant based on the technique and finally (5) proposes a feasibility study for the process demonstration and construction of this new technological capability Demonstration Plant.
Resumo:
Photovoltaic (PV) solar energy has been growing during the last decade an explosive rate. Last year (2011) the solar cell production amounted to more than 37 GW. It is the energy technology most installed nowadays. The power generated by the 37 GW is similar to the one generated by about 7 nuclear units of 1 GW each. The solar industry is already a huge industry dominated by Asian countries led by China. It is not anymore a promise. It is just a reality.
Resumo:
Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN) is a non-profrt organization that depends on the Spanish Nuclear Society (Sociedad Nuclear Española, SNE).Since one of rts main goals is to spread the knowledge about nuclear power,severa! technical tours to facilities wrth an importan!role in the nuclear fuel cycle have been organized for the purpose ofleaming about the different stages of the Spanish tuel cycle. Spanish Young Generation in Nuclear had the opportunity to visit ENUSA Fuel Assembly Factory in Juzbado (Salamanca, Spain), Where it could be understood the front-end cycle which involves the uranium supply and storage, design and manufacturing of fuel bundles for European nuclear power plants. Alterwards, due to the tour of Almaraz NPP (PWR) and Santa María de Garoña NPP (BWR), rt could be comprehended how to obtain energy from this fuel in two different types of reactors.Furthermore,in these two plants, the facilities related to the back-end cycle could be toured. lt was possible to watch the Spent FuelPools, where the fuel bundles are stored under water until their activity is reduced enough to transport them to an Individual Temporary Storage Facility orto the Centralized Temporary Storage. Finally, a technical tour to ENSA Heavy Components Factory (ENSA) was accomplished, Where it could be experienced at first hand how different Nuclear Steam Supply System (NSSS) components and other nuclear elements, such as racks or shipping and storage casks for spent nuclear fuel, are manulactured.
All these perlonned technical tours were a complete success thanks to a generous care and know-how of the wor1
Resumo:
The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.
Resumo:
In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000 ppm were tested at 20 �C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000 ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000 ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.
Resumo:
La presente tesis se centra en el estudio de los fenómenos de transporte de los isótopos de hidrógeno, y más concretamente del tritio, en materiales de interés para los reactores de fusión nuclear. Los futuros reactores de fusión nuclear necesitarán una Planta de Tritio, con una envoltura regeneradora (breeding blanket) y unos sistemas auxiliares claves para su diseño. Por lo tanto su desarrollo y cualificación son cruciales para demostrar que los reactores de fusión son una opción viable como futura fuente de energía. Se han resaltado los diferentes retos de la difusión y retención de estas especies ligeras para cada sistema de la Planta de Tritio, y se han identificado las necesidades experimentales y paramétricas para abordar las simulaciones de difusión, como factores de transporte como la difusividad, absorción/desorción, solubilidad y atrapamiento. Se han estudiado los fenómenos de transporte y parámetros del T en el metal líquido LiPb, componente del breeding blanket tanto para una planta de fusión magnética como inercial. Para ello se han utilizado dos experimentos con características diversas, uno de ellos se ha llevado a cabo en un reactor de alto flujo, y por lo tanto, en condiciones de irradiación, y el otro sin irradiación. Los métodos de simulación numérica aplicados se han adaptado a los experimentos para las mediciones y para estudiar el régimen de transporte. En el estudio de estos experimentos se ha obtenido un valor para algunos de los parámetros claves en el transporte y gestión del tritio en el reactor. Finalmente se realiza un cálculo de la acumulación y difusión de tritio en una primera pared de tungsteno para un reactor de fusión inercial. En concreto para el proyecto de fusión por láser europeo, HiPER (para sus fases 4a y 4b). Se ha estudiado: la implantación de los isótopos de H y He en la pared de W tras una reacción de fusión por iluminación directa con un láser de 48MJ; el efecto en el transporte de T de los picos de temperatura en el W debido a la frecuencia de los eventos de fusión; el régimen de transporte en la primera pared. Se han identificado la naturaleza de las trampas más importantes para el T y se ha propuesto un modelo avanzado para la difusión con trampas. ABSTRACT The present thesis focuses into study the transport phenomenons of hydrogen isotopes, more specifically tritium, in materials of interest for nuclear fusion reactors. The future nuclear reactors will be provided of a Tritium Plant, with its breeding blanket and its auxiliary systems, all of them essential components for the plant. Therefore a reliable development and coalification are key issues to prove the viability of the nuclear fusion reactors as an energy source. The currently challenges for the diffusion and accumulation of these light species for each system of the TP has been studied. Experimental and theoretical needs have been identified and analyzed, specially from the viewpoint of the parameters. To achieve reliable simulations of tritium transport, parameters as diffusivity, absorption/desorption, solubility and trapping must be reliables. Transport phenomenon and parameters of T in liquid metal have been studied. Lead lithium is a key component of the breeding blanket, either in magnetic or inertial fusion confinement. Having this aim in mind, two experiments with different characteristics have been used; one of them has been realized in a high flux reactor, and hence, under irradiation conditions. The other one has been realized without radiation. The mathematical methods for the simulation have been adapted to the experiments, for the measures and also to study the transport behavior. A value for some key parameters for tritium management has been obtained in these studies. Finally, tritium accumulation and diffusion in a W first wall of an inertial nuclear fusion reactor has been assessed. A diffusion model of the implanted H, D, T and He species for the two initial phases of the proposed European laser fusion Project HiPER (namely, phase 4a and phase 4b) has been implemented using Tritium Migration Analysis Program, TMAP7. The effect of the prompt and working temperatures and the operational pulsing modes on the diffusion are studied. The nature of tritium traps in W and their performance has been analyzed and discussed.
Resumo:
Various proteins with different biological activities have been observed to be translocated from the nucleus to the cytoplasm in an energy- and signal-dependent manner in eukaryotic cells. This nuclear export is directed by nuclear export signals (NESs), typically characterized by hydrophobic, primarily leucine, amino acid residues. Moreover, it has been shown that CRM1/exportin 1 is an export receptor for leucine-rich NESs. However, additional NES-interacting proteins have been described. In particular, eukaryotic initiation factor 5A (eIF-5A) has been shown to be a critical cellular cofactor for the nuclear export of the HIV type 1 (HIV-1) Rev trans-activator protein. In this study we compared the nuclear export activity of NESs of different origin. Microinjection of export substrates into the nucleus of somatic cells in combination with specific inhibitors indicated that specific nuclear export pathways exist for different NES-containing proteins. In particular, inhibition of eIF-5A blocked the nuclear export of NESs derived from the HIV-1 Rev and human T cell leukemia virus type I Rex trans-activators, whereas nucleocytoplasmic translocation of the protein kinase inhibitor-NES was unaffected. In contrast, however, inhibition of CRM1/exportin 1 blocked the nuclear export of all NES-containing proteins investigated. Our data confirm that CRM1/exportin 1 is a general export receptor for leucine-rich NESs and suggest that eIF-5A acts either upstream of CRM1/exportin 1 or forms a complex with the NES and CRM1/exportin 1 in the nucleocytoplasmic translocation of the HIV-1 Rev and human T cell leukemia virus type I Rex RNA export factors.
Resumo:
The conversion of light to chemical energy by the process of photosynthesis is localized to the thylakoid membrane network in plant chloroplasts. Although several pathways have been described that target proteins into and across the thylakoids, little is known about the origin of this membrane system or how the lipid backbone of the thylakoids is transported and fused with the target membrane. Thylakoid biogenesis and maintenance seem to involve the flow of membrane elements via vesicular transport. Here we show by mutational analysis that deletion of a single gene called VIPP1 (vesicle-inducing protein in plastids 1) is deleterious to thylakoid membrane formation. Although VIPP1 is a hydrophilic protein it is found in both the inner envelope and the thylakoid membranes. In VIPP1 deletion mutants vesicle formation is abolished. We propose that VIPP1 is essential for the maintenance of thylakoids by a transport pathway not previously recognized.
Resumo:
Smad proteins are cytoplasmic signaling effectors of transforming growth factor-β (TGF-β) family cytokines and regulate gene transcription in the nucleus. Receptor-activated Smads (R-Smads) become phosphorylated by the TGF-β type I receptor. Rapid and precise transport of R-Smads to the nucleus is of crucial importance for signal transduction. By focusing on the R-Smad Smad3 we demonstrate that 1) only activated Smad3 efficiently enters the nucleus of permeabilized cells in an energy- and cytosol-dependent manner. 2) Smad3, via its N-terminal domain, interacts specifically with importin-β1 and only after activation by receptor. In contrast, the unique insert of exon3 in the N-terminal domain of Smad2 prevents its association with importin-β1. 3) Nuclear import of Smad3 in vivo requires the action of the Ran GTPase, which mediates release of Smad3 from the complex with importin-β1. 4) Importin-β1, Ran, and p10/NTF2 are sufficient to mediate import of activated Smad3. The data describe a pathway whereby Smad3 phosphorylation by the TGF-β receptor leads to enhanced interaction with importin-β1 and Ran-dependent import and release into the nucleus. The import mechanism of Smad3 shows distinct features from that of the related Smad2 and the structural basis for this difference maps to the divergent sequences of their N-terminal domains.
Resumo:
The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.
Resumo:
The energy spectrum of ultra-high energy cosmic rays above 10(18)eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confidence for flux measurements is defined when all the uncertainties are taken into account. An update is also reported of the energy spectrum obtained by combining the hybrid spectrum and that measured using the surface detector array.
Resumo:
Observations of cosmic rays arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three method can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ... , 110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.
Resumo:
The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E(2)dN/dE < 1.74 x 10(-7)GeVcm(-2)s(-1)sr(-1) at 90% C.L. in the energy range 1 x 10(17) eV < E < 1 x 10(20)eV.